NVIDIA CUDA Software and GPU Parallel Computing Architecture

David B. Kirk, Chief Scientist
Outline

- Applications of GPU Computing
- CUDA Programming Model Overview
- Programming in CUDA – The Basics
- How to Get Started!

- Exercises / Examples Interleaved with Presentation Materials
 - Homework for later 😊
Future Science and Engineering Breakthroughs Hinge on Computing

- Computational Geoscience
- Computational Chemistry
- Computational Medicine
- Computational Modeling
- Computational Physics
- Computational Biology
- Computational Finance
- Image Processing
Faster is not “just Faster”

2-3X faster is “just faster”
- Do a little more, wait a little less
- Doesn’t change how you work

5-10x faster is “significant”
- Worth upgrading
- Worth re-writing (parts of) the application

100x+ faster is “fundamentally different”
- Worth considering a new platform
- Worth re-architecting the application
- Makes new applications possible
- Drives “time to discovery” and creates fundamental changes in Science
The GPU is a New Computation Engine

Relative Floating Point Performance

Era of Shaders

Fully Programmable

G80

2002 2003 2004 2005 2006
Closely Coupled CPU-GPU

- Integrated programming model
- High speed data transfer – up to 3.2 GB/s
- Asynchronous operation
- Large GPU memory systems
Millions of CUDA-enabled GPUs

- Dedicated computing
- C on the GPU
- Servers through Notebook PCs

Total GPUs (millions)

© NVIDIA Corporation 2006-2008
GeForce®
Entertainment

Quadro®
Design & Creation

Tesla™
High Performance Computing

GPU
Parallel GPUs with Multithreading:
705 GFLOPS /w 3 GPUs

- One host thread is created for each CUDA GPU
- Threads are spawned and attach to their GPU based on their host thread ID
 - First CUDA call binds that thread’s CUDA context to that GPU for life
 - Handling error conditions within child threads is dependent on the thread library and, makes dealing with any CUDA errors somewhat tricky, left as an exercise to the reader... 😐
- Map slices are computed cyclically by the GPUs
- Want to avoid false sharing on the host memory system
 - map slices are usually much bigger than the host memory page size, so this is usually not a problem for this application
- Performance of 3 GPUs is stunning!
- Power: 3 GPU test box consumes 700 watts running flat out

http://www.ks.uiuc.edu/Research/vmd/projects/ece498/lecture/
EvolvedMachines

- Simulate the brain circuit
- Sensory computing: vision, olfactory
- 130X Speed up
Hanweck Associates

- VOLERA, real-time options implied volatility engine
- Accuracy results with SINGLE PRECISION
- Evaluate all U.S. listed equity options in <1 second

(www.hanweckassoc.com)
LIBOR APPLICATION:
Mike Giles and Su Xiaoke
Oxford University Computing Laboratory

- LIBOR Model with portfolio of swaptions
- 80 initial forward rates and 40 timesteps to maturity
- 80 Deltas computed with adjoint approach

<table>
<thead>
<tr>
<th></th>
<th>No Greeks</th>
<th>Greeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel Xeon</td>
<td>18.1s</td>
<td>26.9s</td>
</tr>
<tr>
<td>ClearSpeed Advance</td>
<td>2.9s</td>
<td>6.4s</td>
</tr>
<tr>
<td>2 CSX600</td>
<td></td>
<td>4x</td>
</tr>
<tr>
<td>NVIDIA 8800 GTX</td>
<td>0.045s</td>
<td>0.18s</td>
</tr>
<tr>
<td></td>
<td>400x</td>
<td>149x</td>
</tr>
</tbody>
</table>

“The performance of the CUDA code on the 8800 GTX is exceptional”
-Mike Giles

Source codes and papers available at:
http://web.comlab.ox.ac.uk/oucl/work/mike.giles/hpc
Manifold 8 GIS Application

From the Manifold 8 feature list:

… applications fitting CUDA capabilities that might have taken tens of seconds or even minutes can be accomplished in hundredths of seconds. … CUDA will clearly emerge to be the future of almost all GIS computing

From the user manual:

"NVIDIA CUDA ... could well be the most revolutionary thing to happen in computing since the invention of the microprocessor"
nbody Astrophysics

Astrophysics research

1 GF on standard PC

300+ GF on GeForce 8800GTX

Faster than GRAPE-6Af custom simulation computer

http://progrape.jp/cs/
Matlab: Language of Science

17X with MATLAB CPU+GPU

Pseudo-spectral simulation of 2D Isotropic turbulence

http://www.amath.washington.edu/courses/571-winter-2006/matlab/FS_2Dturb.m
GPU Computing

- GPU is a massively parallel processor
 - NVIDIA G80: 128 processors
 - Support thousands of active threads (12,288 on G80)

- GPU Computing requires a programming model that can efficiently express that kind of parallelism
 - Most importantly, data parallelism

- CUDA implements such a programming model
CUDA Kernels and Threads

- Parallel portions of an application are executed on the device as **kernels**
 - One *kernel* is executed at a time
 - Many threads execute each *kernel*

- Differences between CUDA and CPU threads
 - **CUDA** threads are extremely lightweight
 - Very little creation overhead
 - Instant switching
 - **CUDA** uses 1000s of threads to achieve efficiency
 - Multi-core CPUs can use only a few

Definitions:

Device = GPU; Host = CPU

Kernel = function that runs on the device
Arrays of Parallel Threads

- A CUDA kernel is executed by an array of threads
- All threads run the same code
- Each thread has an ID that it uses to compute memory addresses and make control decisions

```
float x = input[threadID];
float y = func(x);
output[threadID] = y;
```

```
threadID  0 1 2 3 4 5 6 7
```
Thread Cooperation

- The Missing Piece: threads may need to cooperate

- Thread cooperation is valuable
 - Share results to save computation
 - Synchronization
 - Share memory accesses
 - Drastic bandwidth reduction

- Thread cooperation is a powerful feature of CUDA
Thread Blocks: Scalable Cooperation

- Divide monolithic thread array into multiple blocks
 - Threads within a block cooperate via **shared memory**
 - Threads in different blocks cannot cooperate

- Enables programs to **transparently scale** to any number of processors!

```
Thread Block 0
threadID
0 1 2 3 4 5 6 7

... float x = input[threadID];
... float y = func(x);
... output[threadID] = y;
...

Thread Block N - 1
threadID
0 1 2 3 4 5 6 7

... float x = input[threadID];
... float y = func(x);
... output[threadID] = y;
...
```
Transparent Scalability

- Hardware is free to schedule thread blocks on any processor at any time
- A kernel scales across any number of parallel multiprocessors
CUDA Programming Model

A kernel is executed by a **grid of thread blocks**

- A **thread block** is a batch of threads that can cooperate with each other by:
 - Sharing data through shared memory
 - Synchronizing their execution

- Threads from different blocks cannot cooperate
G80 Device

- Processors execute computing threads
- Thread Execution Manager issues threads
- 128 Thread Processors grouped into 16 Multiprocessors (SMs)
- Parallel Data Cache (Shared Memory) enables thread cooperation
Thread and Block IDs

- Threads and blocks have IDs
 - Each thread can decide what data to work on

- Block ID: 1D or 2D
- Thread ID: 1D, 2D, or 3D

- Simplifies memory addressing when processing multi-dimensional data
 - Image processing
 - Solving PDEs on volumes
Kernel Memory Access

- **Registers**
- **Global Memory (external DRAM)**
 - Kernel input and output data reside here
 - Off-chip, large
 - Uncached
- **Shared Memory (Parallel Data Cache)**
 - Shared among threads in a single block
 - On-chip, small
 - As fast as registers

The host can read & write global memory but not shared memory
Execution Model

- Kernels are launched in grids
 - One kernel executes at a time

- A block executes on one Streaming Multiprocessor (SM)
 - Does not migrate

- Several blocks can reside concurrently on one SM
 - Control limitations (of G8X/G9X GPUs):
 - At most 8 concurrent blocks per SM
 - At most 768 concurrent threads per SM

 - Number is further limited by SM resources
 - Register file is partitioned among all resident threads
 - Shared memory is partitioned among all resident thread blocks
CUDA Advantages over Legacy GPGPU

(Legacy GPGPU is programming GPU through graphics APIs)

- Random access byte-addressable memory
 - Thread can access any memory location
- Unlimited access to memory
 - Thread can read/write as many locations as needed
- Shared memory (per block) and thread synchronization
 - Threads can cooperatively load data into shared memory
 - Any thread can then access any shared memory location
- Low learning curve
 - Just a few extensions to C
 - No knowledge of graphics is required
- No graphics API overhead
CUDA Model Summary

- Thousands of lightweight concurrent threads
 - No switching overhead
 - Hide instruction and memory latency
- Shared memory
 - User-managed L1 cache
 - Thread communication / cooperation within blocks
- Random access to global memory
 - Any thread can read/write any location(s)
- Current generation hardware:
 - Up to 128 streaming processors

<table>
<thead>
<tr>
<th>Memory</th>
<th>Location</th>
<th>Cached</th>
<th>Access</th>
<th>Scope (“Who?”)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared</td>
<td>On-chip</td>
<td>N/A</td>
<td>Read/write</td>
<td>All threads in a block</td>
</tr>
<tr>
<td>Global</td>
<td>Off-chip</td>
<td>No</td>
<td>Read/write</td>
<td>All threads + host</td>
</tr>
</tbody>
</table>
Outline of CUDA Basics

Basics to set up and execute GPU code:
- GPU memory management
- GPU kernel launches
- Some specifics of GPU code

Basics of some additional features:
- Vector types
- Managing multiple GPUs, multiple CPU threads
- Checking CUDA errors
- CUDA event API
- Compilation path

NOTE: only the basic features are covered
See the Programming Guide for many more API functions
Managing Memory

- **Host (CPU) code manages device (GPU) memory:**
 - Allocate / free
 - Copy data
 - Applies to *global* and *constant* device memory (DRAM)

- **Shared memory (on-chip) is statically allocated**

- **Host manages texture data:**
 - Stored on GPU
 - Takes advantage of texture caching / filtering / clamping

- **Host manages pinned (non-pageable) CPU memory:**
 - Allocate / free
GPU Memory Allocation / Release

- `cudaMalloc(void ** pointer, size_t nbytes)`
- `cudaMemset(void * pointer, int value, size_t count)`
- `cudaFree(void* pointer)`

```c
int n = 1024;
int nbytes = 1024*sizeof(int);
int *d_a = 0;
cudaMalloc( (void**)&d_a,  nbytes );
cudaMemset( d_a, 0, nbytes);
cudaFree(d_a);
```
Data Copies

cudaMemcpy(void *dst, void *src, size_t nbytes, enum cudaMemcpyKind direction);

direction specifies locations (host or device) of src and dst
Blocks CPU thread: returns after the copy is complete
Doesn’t start copying until previous CUDA calls complete

cudaMemcpyAsync(..., cudaStream_t streamId)
Host memory must be pinned (allocate with cudaMemcpyHost)
Returns immediately
doesn’t start copying until previous CUDA calls in stream streamId or 0 complete

enum cudaMemcpyKind
- cudaMemcpyHostToDevice
- cudaMemcpyDeviceToHost
- cudaMemcpyDeviceToDevice
Exercise 1

We’re going to dive right into programming CUDA

In exercise 1 you will learn to use cudaMalloc and cudaMemcpy
Executing Code on the GPU

C function with some restrictions
- Can only access GPU memory
- No variable number of arguments ("varargs")
- No static variables

Must be declared with a qualifier
- __global__: invoked from within host (CPU) code, cannot be called from device (GPU) code, must return void
- __device__: called from other GPU functions, cannot be called from host (CPU) code
- __host__: can only be executed by CPU, called from host

__host__ and __device__ qualifiers can be combined
- sample use: overloading operators
- Compiler will generate both CPU and GPU code
Launching kernels on GPU

Modified C function call syntax:
```
kernel<<<dim3 grid, dim3 block, int smem, int stream>>>(...)
```

Execution Configuration (“<<< >>>”):
- grid dimensions: x and y
- thread-block dimensions: x, y, and z
- shared memory: number of bytes per block for extern smem variables declared without size
 - optional, 0 by default
- stream ID
 - optional, 0 by default

```
dim3 grid(16, 16);
dim3 block(16,16);
kernel<<<grid, block, 0, 0>>>(...);
kernelt<<<32, 512>>>(...);
```
CUDA Built-in Device Variables

All __global__ and __device__ functions have access to these automatically defined variables:

- `dim3 gridDim;`
 - Dimensions of the grid in blocks (gridDim.z unused)
- `dim3 blockDim;`
 - Dimensions of the block in threads
- `dim3 blockIdx;`
 - Block index within the grid
- `dim3 threadIdx;`
 - Thread index within the block
Minimal Kernels

```c
__global__ void minimal( int* d_a)
{
    *d_a = 13;
}

__global__ void assign( int* d_a, int value)
{
    int idx = blockDim.x * blockIdx.x + threadIdx.x;
    d_a[idx] = value;
}
```

Common Pattern!
Minimal Kernel for 2D data

```c
__global__ void assign2D(int* d_a, int w, int h, int value) {
    int iy = blockDim.y * blockIdx.y + threadIdx.y;
    int ix = blockDim.x * blockIdx.x + threadIdx.x;
    int idx = iy * w + ix;

    d_a[idx] = value;
}

... assign2D<<<dim3(64, 64), dim3(16, 16)>>>(...);
Exercise 2: your first CUDA kernel

In this exercise you will write and execute a simple CUDA kernel
Host Synchronization

- All kernel launches are asynchronous
  - control returns to CPU immediately
  - kernel executes after all previous CUDA calls have completed

- cudaMemcpy is synchronous
  - control returns to CPU after copy completes
  - copy starts after all previous CUDA calls have completed

- cudaMemcpyAsync() blocks until all previous CUDA calls complete

Async API provides:
- GPU CUDA-call streams
- non-blocking cudaMemcpyAsync
Example: Increment Array Elements

CPU program

```c
void increment_cpu(float *a, float b, int N)
{
 for (int idx = 0; idx<N; idx++)
 a[idx] = a[idx] + b;
}

void main()
{

 increment_cpu(a, b, N);
}
```

CUDA program

```c
__global__ void increment_gpu(float *a, float b, int N)
{
 int idx = blockIdx.x * blockDim.x + threadIdx.x;
 if (idx < N)
 a[idx] = a[idx] + b;
}

void main()
{

 dim3 dimBlock (blocksize);
 dim3 dimGrid(ceil(N / (float)blocksize));
 increment_gpu<<<dimGrid, dimBlock>>>(a, b, N);
}
```
Example: Increment Array Elements

Increment N-element vector a by scalar b

Let’s assume N=16, blockDim=4   -> 4 blocks

int idx = blockDim.x * blockIdx.x + threadIdx.x;
will map from local index threadIdx to global index

NB: blockDim should be >= 32 in real code, this is just an example
Example: Host Code

// allocate host memory
unsigned int numBytes = N * sizeof(float)
float* h_A = (float*) malloc(numBytes);

// allocate device memory
float* d_A = 0;
cudaMalloc((void**)&d_A, numbytes);

// copy data from host to device
cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice);

// execute the kernel
increment_gpu<<< N/blockSize, blockSize>>>(d_A, b);

// copy data from device back to host
cudaMemcpy(h_A, d_A, numBytes, cudaMemcpyDeviceToHost);

// free device memory
cudaFree(d_A);
Variable Qualifiers (GPU code)

__device__
- stored in device memory (large, high latency, no cache)
- Allocated with cudaMemcpy (__device__ qualifier implied)
- accessible by all threads
- lifetime: application

__constant__
- same as __device__, but cached and read-only by GPU
- written by CPU via cudaMemcpyToSymbol(...) call
- lifetime: application

__shared__
- stored in on-chip shared memory (very low latency)
- accessible by all threads in the same thread block
- lifetime: kernel launch

**Unqualified variables:**
- scalars and built-in vector types are stored in registers
- arrays of more than 4 elements stored in device memory
CUDA Memory Spaces

Each thread can:
- Read/write per-thread registers
- Read/write per-thread local memory
- Read/write per-block shared memory
- Read/write per-grid global memory
- Read only per-grid constant memory
- Read only per-grid texture memory

The host can read/write global, constant, and texture memory (stored in DRAM)
CUDA Memory Spaces

- Global and Shared Memory introduced before
  - Most important, commonly used
- Local, Constant, and Texture for convenience/performance
  - Local: automatic array variables allocated there by compiler
  - Constant: useful for uniformly-accessed read-only data
  - Texture: useful for spatially coherent random-access read-only data
  - Cached (see programming guide)

Cached (see programming guide)

Provides address clamping and wrapping

<table>
<thead>
<tr>
<th>Memory</th>
<th>Location</th>
<th>Cached</th>
<th>Access</th>
<th>Scope (“Who?”)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>Off-chip</td>
<td>No</td>
<td>Read/write</td>
<td>One thread</td>
</tr>
<tr>
<td>Shared</td>
<td>On-chip</td>
<td>N/A</td>
<td>Read/write</td>
<td>All threads in a block</td>
</tr>
<tr>
<td>Global</td>
<td>Off-chip</td>
<td>No</td>
<td>Read/write</td>
<td>All threads + host</td>
</tr>
<tr>
<td>Constant</td>
<td>Off-chip</td>
<td>Yes</td>
<td>Read</td>
<td>All threads + host</td>
</tr>
<tr>
<td>Texture</td>
<td>Off-chip</td>
<td>Yes</td>
<td>Read</td>
<td>All threads + host</td>
</tr>
</tbody>
</table>
Built-in Vector Types

Can be used in GPU and CPU code


  Structures accessed with $x$, $y$, $z$, $w$ fields:

  ```
 uint4 param;
 int y = param.y;
  ```

- `dim3`
  - Based on `uint3`
  - Used to specify dimensions
  - Default value (1,1,1)
Thread Synchronization Function

```c
void __syncthreads();
```

Synchronizes all threads in a block
- Generates barrier synchronization instruction
- No thread can pass this barrier until all threads in the block reach it
- Used to avoid RAW / WAR / WAW hazards when accessing shared memory

Allowed in conditional code only if the conditional is uniform across the entire thread block
GPU Atomic Integer Operations

Atomic operations on integers in global memory:
- Associative operations on signed/unsigned ints
- add, sub, min, max, ...
- and, or, xor
- Increment, decrement
- Exchange, compare and swap

Requires hardware with compute capability 1.1
Device Management

**CPU can query and select GPU devices**
- `cudaGetDeviceCount( int *count )`
- `cudaSetDevice( int device )`
- `cudaGetDevice( int *current_device )`
- `cudaGetDeviceProperties( cudaDeviceProp* prop, int device )`
- `cudaChooseDevice( int *device, cudaDeviceProp* prop )`

**Multi-GPU setup:**
- device 0 is used by default
- one CPU thread can control only one GPU
- multiple CPU threads can control the same GPU
  - calls are serialized by the driver
Multiple CPU Threads and CUDA

CUDA resources allocated by a CPU thread can be consumed only by CUDA calls from the same CPU thread

Violation Example:

- CPU thread 2 allocates GPU memory, stores address in \( p \)
- thread 3 issues a CUDA call that accesses memory via \( p \)
CUDA Error Reporting to CPU

- All CUDA calls return error code:
  - except for kernel launches
  - `cudaError_t` type

- `cudaError_t cudaMemcpyLastError(void)`
  - returns the code for the last error (no error has a code)

- `char* cudaMemcpyGetLastError(cudaError_t code)`
  - returns a null-terminated character string describing the error

```c
printf("\%s\n", cudaMemcpyGetLastError(cudaGetLastError()));
```
CUDA Event API

Events are inserted (recorded) into CUDA call streams

Usage scenarios:
- measure elapsed time for CUDA calls (clock cycle precision)
- query the status of an asynchronous CUDA call
- block CPU until CUDA calls prior to the event are completed
- asyncAPI sample in CUDA SDK

```c
cudaEvent_t start, stop;
cudaEventCreate(&start); cudaEventCreate(&stop);
cudaEventRecord(start, 0);
kernel<<<grid, block>>>(...);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
float et;
cudaEventElapsedTime(&et, start, stop);
cudaEventDestroy(start); cudaEventDestroy(stop);
```
Compiling CUDA

C/C++ CUDA Application → NVCC → PTX Code

Virtual

PTX to Target Compiler

Physical

G80  ...  GPU

Target code
NVCC & PTX Virtual Machine

C/C++ CUDA Application

EDG

Open64

PTX Code

CPU Code

**EDG**
- Separate GPU vs. CPU code

**Open64**
- Generates GPU PTX assembly
- Parallel Thread eXecution (PTX)
  - Virtual Machine and ISA
  - Programming model
  - Execution resources and state

float4 me = gx[gtid];
me.x += me.y * me.z;
ld.global.v4.f32 {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32 $f1, $f5, $f3, $f1;
Compilation

- Any source file containing CUDA language extensions must be compiled with `nvcc`
- NVCC is a **compiler driver**
  - Works by invoking all the necessary tools and compilers like `cudacc`, `g++`, `cl`, ...
- NVCC can output:
  - Either C code (CPU Code)
    - That must then be compiled with the rest of the application using another tool
  - Or PTX object code directly
- **An executable with CUDA code requires:**
  - The CUDA core library (`cuda`)
  - The CUDA runtime library (`cudart`)
  - if runtime API is used
  - loads `cuda` library
Exercise 3: Reverse a Small Array

- Given an input array, reverse it
- In this part, you will reverse a small array
  - the Size of a single thread block
Exercise 4: Reverse a Large Array

- Given a large input array, reverse it
- This requires launching many thread blocks
Getting Started
Get CUDA

CUDA Zone: http://nvidia.com/cuda

- Programming Guide and other Documentation
- Toolkits and SDKs for:
  - Windows
  - Linux
  - MacOS
- Libraries
- Plugins
- Forums
- Code Samples
Come visit the class!

UIUC ECE498AL – Programming Massively Parallel Processors (http://courses.ece.uiuc.edu/ece498/al/)

- David Kirk (NVIDIA) and Wen-mei Hwu (UIUC) co-instructors
- CUDA programming, GPU computing, lab exercises, and projects
- Lecture slides and voice recordings
Questions?