 백서

엔비디아 Tegra 4 제품군

GPU 아키텍처

V1.0
목차

소개..4

빠른 모바일 GPU의 필요성 ..5

Tegra 4 제품군 GPU 기능 및 아키텍처 ..6

Tegra 4 제품군 GPU 논리 파이프라인 흐름 ...7

GPU 파이프라인 구현 세부 사항 ..9

버텍스 처리 엔진 ..10

랜서터 엔진 및 조기 Z ..11

VLIW 픽셀 프래그먼트 세이더 파이프라인 ...11

텍스처 필터링 유닛 ...12

랜서터 연산 ..12

추가적인 GPU 기능 ..14

Tegra 4 및 Tegra 4i와 Tegra 3의 성능 요인 비교 ..15

Tegra 4i GPU 아키텍처 다이어그램 ..17

아키텍처 효율성 ...18

경쟁 제품 벤치마크 결과 ...19

고급 전력 관리 기능 ..20

Tegra GPU 및 메모리 컨트롤러 인터페이스 ..21

모바일 게임에서 고급 그래픽 효과 지원 ..23

결론 ...27

부록 A: Tegra 4 GPU 벤치마크 ..28

부록 B: Tegra 4/4i에서 지원되는 비디오 및 오디오 형식 ...28
소개

모바일 장치는 가장 중요한 개인용 컴퓨터로 빠르게 자리매김하고 있다. 이메일을 읽거나 웹서핑을 하거나 소셜 네트워크에서 다른 사람과 소통하거나 사진을 찍거나 게임을 하거나 수많은 앱을 사용할 때도 스마트폰과 태블릿은 여느 동네 안 될 필수품이 되었다. 다양한 용도를 지원하는 폴 팩터, 비즈니스 앱 실행 능력, 물리적 키보드, 탁월한 배터리 수명 등의 이유로 Microsoft의 Surface RT나 Lenovo의 Yoga 11 같은 모바일 장치를 사용하는 사람들도 많다.

갈수록 성능이 강력해지는 GPU 서브시스템 덕분에 모바일 장치에서 뛰어난 시각적 컴퓨팅 환경도 구현할 수 있게 되었다. 빠른 속도의 GPU는 풍부하고 부드러운 2D 또는 3D 사용자 인터페이스와 고해상도 디스플레이 출력, 빠른 웹 페이지 렌더링, 빠른 사진 및 비디오 편집, 더 사실적인 3D 게임 실행 환경을 구현한다. 매우 상세하고 알기 쉬운 3D 네비게이션 시스템과 디지털 계기판 또는 뒷좌석 엔터테인먼트 시스템과 운전 보조 시스템 등의 자동 인포테인먼트 애플리케이션에도 강력한 GPU는 필수 요구 사항이 되고 있다.

NVIDIA® Tegra® 모바일 프로세서는 새로운 세대를 선보일 때마다 대폭 강화된 CPU 및 GPU 성능을 제공하는 동시에 아키텍처 효율성과 전력 효율성까지 개선되었다. Tegra 프로세서는 스마트폰과 태블릿에서 새롭고 놀라운 모바일 컴퓨팅 환경을 실현해 주었다. 대표적인 예로 완전한 기능을 갖춘 웹 브라우징, 콘솔급의 게임 실행 환경, 빠른 UI, 멀티태스킹 응답 속도, 블루레이 품질의 비디오 재생 등을 꼽을 수 있다.

CES 2013에서 엔비디아는 ARM Cortex-A15 CPU 4개, 배터리 세이버(Battery Saver) Cortex A15 코어, 72코어 엔비디아 GPU를 사용한 세계 최초의 쿼드 코어 SoC, Tegra 4 프로세서를 발표했다. GPU 코어 수가 늘어나고 클럭이 빨라지면서 아키텍처의 효율성이 향상되면서 Tegra 4 프로세서의 GPU는 Tegra 2 프로세서보다 약 20배 강력한 GPU 처리 성능을 제공한다. 또한 Tegra 4 프로세서는 CPU, GPU, ISP를 복합적으로 사용하여 실시간에 가까운 HDR 사진 및 1080p 30fps 비디오 녹화를 지원하는 계산 사진학 엔진(Computational Photography Engine)을 구성한다. 자세한 내용은 엔비디아에서 제공하는 키메라(Chimera)™: 엔비디아 계산사진학 (Computational Photography) 아키텍처 라는 백서에서 확인할 수 있다.
Tegra 4 프로세서의 다른 버전인 Tegra 4i 프로세서 (코드명 Project Grey)도 2013년 2월에 발표되었다. Tegra 4i 프로세서는 동급 최고 성능을 자랑하는 싱글칩 스마트폰 프로세서로, 앤비디아 i500 LTE 모뎀과 쿼드 Cortex-A9 r4 코어에 60 코어 GPU가 통합되어 있다. Tegra 4i GPU에 대해서는 Tegra 4 제품군 GPU 기능 및 아키텍처 섹션에서 자세히 설명하도록 한다.

빠른 모바일 GPU의 필요성

가장 인기 있는 애플리케이션 카테고리 중 빠른 GPU 처리 성능을 요구하는 것으로 3D 게임을 들 수 있다. 모바일 게임은 단순한 2D 그래픽에서 출발하여 지금은 콘솔 게임의 환경과 그래픽 품질에 머무기는 수준의 3D 게임으로 발전했다. 실제로 Tegra 4의 GPU 코어와 CPU 코어를 완벽하게 이용하는 일부 게임은 PC 게임과 구분하기 어려울 정도의 그래픽을 보여 준다. 모바일 게임이 발전함과 동시에 모바일 게임 산업 역시 애플리케이션의 한 분야로서 현재 가파른 성장세를 보이고 있다. 이제 Max Payne이나 Grand Theft Auto III 처럼 시각적으로 화려한 PC 게임과 콘솔 게임을 모바일 장치에서도 즐길 수 있다.

일반적인 사용 거리에서는 육안으로 개별 픽셀을 인식할 수 없을 정도의 고품질, 고해상도를 자랑하는 레티나 디스플레이가 다양한 모바일 장치에 사용되고 있다. 이러한 높은 해상도의 디스플레이를 구현하려면 부드러운 UI 동작, 빠른 웹 페이지 렌더링, 원활한 고해상도 사진 조작, 그리고 무엇보다 고품질 3D 게임 실행 환경을 제공할 수 있는 빠른 속도의 GPU가 필요하다. 마찬가지로, 스마트폰이나 테블릿을 고해상도 외부 4K 스크린에 연결하기 위해서도 당연히 강력한 GPU가 있어야 한다.

지난 20년 동안 GPU 업계를 선도한 NVIDIA® Tegra® 4 모바일 프로세서 제품군의 모바일 GPU는 콘솔급 모바일 게임, 최신 사용자 인터페이스, 고해상도 디스플레이에 요구되는 성능을 제공하는 동시에 전력 소모를 모바일 장치에서 허용되는 한도 이내로 줄이도록 설계되었다. 또한 Tegra 4 프로세서는 현재 출시된 모든 모바일 SoC 가운데 GPU 서브시스템의 아키텍처 효율성이 가장 뛰어나다는 사실을 확인할 수 있다. 이어서 Tegra 4 프로세서에 구현된 고성능 GPU를 자세히 살펴보도록 하자.
Tegra 4 제품군 GPU 기능 및 아키텍처

Tegra 4 프로세서의 GPU는 2D 렌더링과 3D 렌더링을 모두 가속화한다. 요즘 2D 렌더링은 당연한 것으로 여겨지고 있지만 사용자 환경에 있어서 매우 중요한 요소임에 틀림없다. Tegra 4 프로세서의 GPU는 2D 렌더링 알파 블렌딩, 라인 드로잉, 비디오 스케일링, BitBLT, 색상 공간 변환, 화면 회전 등 기본적인 2D 구성 관련 기능을 모두 제공한다. 또한 디스플레이 서브시스템 및 디코더 유닛과 함께 작동하면서 하이엔드 4K 비디오 디스플레이로의 4K 비디오 출력을 지원하는 데 일조한다.

3D 엔진은 프로그래밍을 완벽하게 지원하며, 고급 3D 사용자 인터페이스와 콘솔에 버금가는 풀질의 게임 환경을 구현 하는 고성능 지오메트리 및 핫셀 처리 기능이 포함되어 있다. 또한 이 GPU는 웹페이지 및 GPGPU(범용 목적 GPU) 컴퓨팅에서 플래시 처리를 가속화한다. 엔비디아의 새로운 계산사진학(Computational Photography) 엔진인 엔비디아 Chimera™ 아키텍처에서도 이러한 방식으로 실시간에 가까운 HDR 사진 및 비디오 촬영, HDR 파노라마 이미지 처리 및 "탭 투 트랙(Tap-to-Track)" 객체 추적을 구현한다.

이래의 그림 1에 나와 있는 Tegra 4 제품군 다이어그램에서 보듯이 Tegra 4 프로세서에는 72 코어 GPU 서브시스템이 포함되어 있다. Tegra 4 프로세서의 GPU에는 Tegra 3 프로세서보다 6배 많은 수의 셰이더 처리 코어가 탑재되어 대략 3-4배, 때로는 그보다 더욱 향상된 게임 성능을 제공한다. 엔비디아 Tegra 4i 프로세서는 Tegra 4 프로세서와 동일한 GPU 아키텍처를 사용하지만 코어 수가 72 개가 아니라 60 개라는 차이가 있다. 60 개의 코어로도 메인스트림 스마트폰 장치에서 놀라운 수준의 그래픽 성능을 제공한다.
Tegra 4 제품군 GPU 논리 파이프라인 흐름

NVIDIA® Tegra 4® 및 Tegra 4i 프로세서의 GPU는 높은 성능과 우수한 전력 효율을 낼 수 있는 즉시 모든 파이프라인을 구현한다. 이어지는 몇 개 섹션에서는 Tegra 4 프로세서를 중심으로 설명하였지만 Tegra 4i 프로세서도 논리 파이프라인의 세부적인 사항은 동일하다. 모바일 SoC 프로세서에서 높은 전력 효율과 고성능을 실현하기 위해서는 오프칩 메모리 액세스를 줄이는 것이 관건이다. Tegra 4 프로세서의 GPU에는 온칩 버텍스, 텍스처 및 픽셀 캐시가 포함되어 있어 오프칩 메모리 액세스 횟수를 줄이고 데이터 요청을 처리할 때 적중률을 높여 준다. Early Z-culling 로직은 픽셀 세이딩 단계 전에 미리 보이지 않는 픽셀 프래그먼트가 폐기되도록 하여 불필요한 세이딩 작업을 없애 준다.

그림 2에는 프리미티브 처리 블록에 연결된 "OpenGL API 호출"이라는 블록이 나와 있다. 애플리케이션 레벨 API 호출은 그래픽 드라이버에서 해석되며, 이 드라이버는 버텍스 및 텍스처 데이터에 대한 다양한 명령과 지시자를 GPU 로 보낸다. 버텍스 버퍼는 이후 재사용을
위해 인출되어 VBO 캐시에 저장된다. 버텍스 세이더 유닛(버텍스 세이더 파이프라인 또는 VPE(버텍스 처리 엔진)이라고도 함)에서 버텍스 세이더 프로그램이 실행되어 캐릭터와 객체 지오메트리의 변화 및 변형과 같은 작업을 수행한다. 프리미티브 어셈블리 단계에서는 버텍스를 결합하여 선, 삼각형 등의 프리미티브를 어셈블하며, 렌더링하지 않아야 할 카메라의 시각 영역(절두체)을 벗어나거나 배면에 존재하거나 파이프라인에서 버려진(제거된) 프리미티브와 시각 절두체 내부 및 외부에 걸쳐 있는 프리미티브의 외부 부분은 잘라낸다. 프리미티브의 가장자리 및 면 방정식은 레스터라이징 준비 단계에서 계산된다.

그림 2 - Tegra 4 논리 그래픽 처리 파이프라인
래스터라이저(Rasterizer)는 프리미티브를 픽셀 프래그먼트로 변환하여 픽셀 세이더 파이프라인에 피딩하며, Early-Z 유닛은 프리미티브에 이미 존재하는 픽셀 뒤쪽에 위치하게 되는 깊이(Z) 값을 가진 픽셀을 거부할 수 있다. 그러면 픽셀 세이더 파이프가 Z 테스트를 통과한 각 픽셀 프래그먼트에 대해 픽셀 세이더 프로그램을 실행하여 픽셀 프래그먼트에 대한 작업을 수행한다. 프로그래밍 방식의 블렌딩 단계가 픽셀 세이더에 포함되어 OpenGL 사양에 명시된 것뿐만 아니라 모든 형태의 블렌드 모드를 구현할 수 있도록 지원한다.

Early-Z 테스트 외에 프레임버퍼에 대한 쓰기 데이터를 저장하는 픽셀 캐시(프레그먼트 데이터 캐시라고도 함)도 사용자 인터페이스 픽셀 또는 기타 재사용률이 높은 영역에 대한 오프칩 프레임버퍼 트래픽을 추가로 줄이는 데 유용하다.

텍스처 유닛은 텍스처 데이터를 인출하고 필터링하여 픽셀에 적용하며, 자주 액세스되는 텍스처 데이터는 각 텍스처 유닛에 있는 L1 텍스처 캐시와 4개 텍스처 유닛 모두에서 공유되는 공유 L2 텍스처 캐시에 저장된다. 마지막으로, 처리된 픽셀은 기존 프레임버퍼 픽셀 정보와 블렌딩되거나 현재 프레임버퍼 픽셀 데이터를 덮어쓸 수 있다.

GPU 파이프라인 구현 세부 사항

다음으로 아래에 나와 있는 NVIDIA® Tegra® 4 프로세서의 GPU 물리 파이프라인을 살펴보기로 하자. 여기서도 Tegra 4 프로세서를 기준으로 설명하지만 유닛 개수를 제외한 일반적인 설명은 Tegra 4i 프로세서에 그대로 적용되는 부분이 많다. 아래에 나와 있는 Tegra 4 프로세서의 GPU 아키텍처 다이어그램(그림 3)은 Tegra 4 프로세서 GPU 서브시스템의 실제 물리적 구현을 자세하게 보여 준다.

위에서부터 설명하면, 먼저 호스트/프랜트 엔드 유닛(표시되지 않음)을 통해 렌더링 명령이 인출된다. 다음으로 인덱스와 버텍스가 메모리에서 직접 인출되고 IDX 유닛에 의해 캐시에 저장된다. 그러면 IDX 가 여러 VPE(버텍스 처리 엔진)로 버텍스를 전달한다. 이 IDX 유닛은 DX9-레벨 인스턴스화도 지원한다. **DX9-레벨 인스턴스화란 단일 draw 명령으로 인스턴스마다 각기 다른 데이터 세트를 사용하여 모델의 여러 인스턴스를 만드는 기능이다.**
버텍스 처리(Vertex Processing) 엔진

버텍스는 Tegra 4 프로세서의 GPU에 포함된 6개의 VPE 유닛에서 처리된다. 각각의 VPE 유닛에는 VEC4 ALU(산술 논리 유닛)가 포함되어 있고 이 VEC4 ALU에는 4개의 MAD(곱셈-덧셈) 유닛이 포함되어 있다(MAD 유닛은 버텍스 코어라는 명칭이 더 일반적으로 사용됨). Tegra 4 프로세서에는 버텍스 코어가 총 24개 포함되어 있다. 이는 Tegra 3 프로세서보다 6배 많은 수자다. VPE 당 16KB로 분할된 96 엔트리 버텍스 버퍼 객체 캐시는 버텍스 재사용을 가능하게 하고 오프집 메모리 액세스를 줄여 준다. 아키텍처가 향상되면서 같은 클럭으로 실행할 때 버텍스 파이프당 성능이 NVIDIA® Tegra® 3 프로세서에 비해 최고 1.5배 높아졌다. 버텍스 채이더 코어는 지오메트리의 정확성을 보장하기 위해 계산 시에 FP32 정밀도를 사용한다.

논리 파이프라인 섹션에서 설명했듯이 프리미티브는 버텍스에서 여생블되며, 화면에 보이지 않거나 배경에 존재하는 모든 프리미티브는 버려지고 일부가 시각 절두체를 벗어난 프리미티브는 잘린다. 프리미티브의 가장자리 및 면 방정식은 래스터라이징 준비 단계에서 계산된다.
래스터 엔진(Raster Engine) 및 Early-Z

래스터 엔진은 프리미티브에서 픽셀 프래그먼트를 생성하며, Tegra 3 프로세서와 비슷하게 클럭당 8개의 픽셀 프래그먼트를 픽셀 씬더 파이프에 제공할 수 있다. Tegra 4 프로세서와 Tegra 4i 프로세서는 모두 2x 및 4x MSAA(멀티샘플 엔티메로일리싱), 24-bit Z 및 8-bit 스텐실 처리를 지원한다. 레스터 유닛은 관련 24-bit Z 및 8-bit 스텐실 값을 사용하여 픽셀 프래그먼트(MSAA 를 사용할 경우의 샘플)를 생성한다.

Early-Z 처리 방식은 GPU 와 오프칩 메모리 간의 메모리 트래픽을 줄여 성능을 개선하고 전력 소모를 줄인다. 드물게 프로그래머가 픽셀 처리가 완료될 때까지 특정 픽셀을 숨겨야 하는 상황이 발생하기도 한다. 이 경우에는 픽셀 씬더 유닛과 블렌드 유닛 내에서 늦은 단계 깊이 테스트(Late-stage Depth Test)가 발생한다.

VLIW 픽셀 프래그먼트 씬더 파이프라인 (VLIW Pixel Fragment Shader Pipelines)

Tegra 4 프로세서 GPU 의 픽셀 프래그먼트 씬더 파이프 4 개에는 각각 ALU 3 개가 포함되어 있고 각 ALU 에는 MAD 유닛 4 개가 포함되어 있어 총 픽셀 씬더 코어 수는 48 개(4 x 3 x 4)이다. ALU 마다 MFU(다기능 유닛)가 하나씩 포함되어 있어 총 MFU 유닛 수는 12 개이다. MFU 유닛은 초월수 계산(대수, 지수, 삼각법, 함수), 역수, 제곱근 및 MOV 연산을 처리한다.

프래그먼트 씬더 파이프라인은 각 ALU 의 MAD 유닛 4 개와 MFU 유닛에 여러 명령을 조합하여 보낼 수 있는 VLIW 아키텍처를 구현한다. 서로 다른 VLIW 명령을 조합한 예는 다음과 같다.

- 4x MAD
- 2x DP2A + MFU
아키텍처 다이어그램에서 보듯이 총 16KB의 픽셀 캐시가 4K L1 캐시 슬라이스 4개로 분할되어 경우에 따라 오프칩 프레임버퍼 액세스를 50% 이상 줄여 준다.

이전 NVIDIA® Tegra® 프로세서의 이전 GPU와 마찬가지로 Tegra 4 프로세서의 GPU는 전력 효율을 높이기 위해 FP20 픽셀 세이더 정밀도를 사용한다. 엔비디아에서 실시한 연구 결과에 따르면 FP32 픽셀 렌더링과 FP20 픽셀 렌더링 간의 이미지 품질 차이는 육안으로 식별하기가 거의 불가능하지만 전력 절감 효과는 이 세대의 SoC에서 FP20의 사용을 보증할 만큼 큰 것으로 나타났다.

통합 아키텍처가 아니라 별도의 버텍스 아키텍처와 픽셀 세이더 아키텍처를 사용한 것도 전력 효율을 높이려는 이유이다. Tegra 4 프로세서 아키텍처에서 별도의 버텍스 세이더와 픽셀 세이더에서 절감되는 전력은 워크로드의 유연성이라는 통합 세이더의 이점을 상쇄하고도 남는다.

텍스처 필터링 유닛

각 픽셀 세이더 유닛에는 HDR(고명암비) 렌더링을 지원하는 FP16 텍스처 필터링의 처리가 가능한 텍스처 필터링 유닛도 포함되어 있다. 4개의 텍스처 유닛 각각에는 자체 L1 캐시와 16K L2 텍스처 캐시가 있어(Tegra 4 및 4i 프로세서 모두) 외부 메모리로부터의 텍스처 인출을 줄임으로써 성능을 개선한다. 4개의 텍스처 유닛에서 이루어지는 텍스처 메모리 액세스의 일반적인 구역성 때문에 L1 및 L2 텍스처 캐시의 조합은 대부분의 경우에 오프칩 텍스처 액세스를 80% 이상 줄일 수 있다.

이전 Tegra 프로세서의 GPU와 마찬가지로 Tegra 4 프로세서는 매우 고품질의 16x 이방성 필터링을 구현한다. 이방성 필터링이란 비스듬한 시야각의 표면 텍스처 이미지 품질을 향상시키기 위해 이용되는 기법이다. 일반적으로 클래식의 각 픽셀을 표시하기 위해서는 메모리의 텍스처 맵에서 여러 텍스처 요소를 인출하여 필터링하고 픽셀에 적용하여 색상을 변경해야 한다. 카메라 또는 시청자와 직각을 이루는 표면을 정면으로 볼 때는 보통 스케어
샘플 패턴을 사용하여 픽셀마다 같은 수의 텍스처 요소가 샘플링된다. 그러나 화면의 이미지가 다른 축에 비해 특정 축을 따라 훨씬 긴게 연장되어 있는 극단적인 시야각에서는 텍스처 맵에서 각 축별로 같은 수의 샘플을 생성하면 지평선으로 수렴되는 축을 따라 텍스처가 흐리게 나타난다.

그림 4의 활주로 이미지 2개 중 오른쪽은 지평선에 가까운 부분의 텍스처 디테일이 흐리게 나타났다. 반면 왼쪽의 활주로는 이방성 필터링이 적용되어 텍스처 디테일이 크게 향상되었다는 것을 알 수 있다. 길게 늘어진 축을 따라 더 많은 텍스처 샘플이 생성되었기 때문이다. 마찬가지로 2x 이방성과 16x 이방성 간에 테스트 패턴의 선명도 차이가 나타나는 것을 확인할 수 있다. 적응 필터링 알고리즘과 효율적인 텍스처 캐시 관리 기법은 메모리 트랜잭션을 크게 증가시키지 않으면서도 높은 텍스처 품질을 제공한다.

그림 4 - 이방성 필터링을 통해 향상된 텍스처 품질 (http://en.wikipedia.org/wiki/Anisotropic_filtering 발췌)
래스터 연산

엔비디아의 데스크톱 GPU의 경우 ROP(Raster Operations, 래스터 연산)가 별도의 ROP 유닛에서 수행되는 경우가 많지만, MSAA 계산, 압축, 블렌딩, 프레임버퍼 읽기/쓰기 등의 작업은 픽셀 씬더 유닛, 블렌드 유닛 및 텍스처 유닛에서 수행된다. NVIDIA® Tegra® 4 프로세서의 전반적인 래스터 출력 속도는 4ppc(클럭당 컬러 픽셀 4 개)로, Tegra 3 프로세서의 래스터 출력 속도보다 2배 빠르다. 하지만 Tegra 4/4i 프로세서의 클럭이 더 높다는 것을 감안하면 실제 래스터 필레이트는 Tegra 3 프로세서의 래스터 필레이트보다 2배 이상 높다. 4ppc라는 출력 속도는 미드엔드 또는 하이엔드 데스크톱 GPU에 비하면 상당히 낮아 보이지만 30~60와트의 전력을 소모하는 저가형 데스크톱 GPU 에서 볼 수 있는 속도이다. 그러한 속도를 몇 와트밖에 전력을 소모하지 않는 모바일 SoC 기반 GPU에서 구현하게 된 것이다.

추가적인 GPU 기능

Tegra 4 프로세서와 Tegra 4i 프로세서의 GPU에는 모바일 장치에서 풍부한 시각 효과, 높은 성능, 더 사실적인 그래픽을 제공하는 다른 향상된 기능이 많이 포함되어 있다. 그중 몇 가지를 소개하면 다음과 같다.

- 2x/4x MSAA(멀티샘플 앤티에일리어싱)\(^1\)
- 24 비트 Z(Tegra 3 프로세서의 경우 20비트 Z)와 8비트 스텐실
- NPOT(Non-Power of Two) 텍스처를 포함한 4K x 4K 텍스처 크기(Tegra 3 프로세서의 경우 2K x 2K) - 더 높은 품질의 텍스처를 제공하고 콘솔 및 PC 게임의 풀 해상도 PC 게임을 Tegra 4 프로세서로 이식하기가 더 용이함. 고해상도 디스플레이에 적합
- 16:1 깊이(Z) 압축 및 4:1 색 압축(Tegra 3 프로세서의 경우 지원하지 않음) - 무손실 압축 방식으로, 프레임버퍼 안팎으로 전송되는 대역폭을 줄이는 데 유용하며 특히 픽셀당 여러 샘플을 처리할 경우 앤티에일리어싱 처리에 효과적임
- 깊이 텍스처
- 새로운 텍스처 매핑과 소프트 새로운 표현을 위한 PCF(근접 비율 필터링)
- 거친 MIP 레벨의 블리딩을 없애는 텍스처 테두리 색
- 텍스처 필터링, 표면 렌더링 및 MSAA 다운필터를 위한 sRGB
Tegra 4/4i 프로세서는 FP32 픽셀 씀에도 EAC/ETC2 텍스처 압축 형식 지원과 같은 몇 가지 기능이 없기 때문에 OpenGL ES 3.0 API를 명시적으로 지원하지 않지만 표 1에서 보듯이 중요한 ES 3.0 기능은 다수 지원한다. 앞서 언급했듯이 엔비디아는 FP32 픽셀 렌더링과 FP20 픽셀 렌더링 간의 이미지 품질 차이는 윤곽으로 식별하기가 거의 불가능하지만 전력 절감 효과는 이세대의 SoC에서 FP20의 사용을 보증할 만큼 크다고 보고 있다. 마찬가지로, Tegra 4에는 DXT와 같이 많이 사용되는 텍스처 압축 형식도 포함되어 있다. 상당 기간 동안은 애플리케이션/게임에 ES 3.0이 사용되지 않을 것으로 예상된다.

Tegra 4 GPU OpenGL ES Features

<table>
<thead>
<tr>
<th>ES Features</th>
<th>Tegra 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBO_render_mipmap</td>
<td>✓</td>
</tr>
<tr>
<td>Uniform Buffer Objects</td>
<td>✓</td>
</tr>
<tr>
<td>Separate Shader Objects</td>
<td>✓</td>
</tr>
<tr>
<td>Framebuffer Bit</td>
<td>✓</td>
</tr>
<tr>
<td>Copy Buffer (ARB_copy_buffer)</td>
<td>✓</td>
</tr>
<tr>
<td>Explicit Attribute Locations</td>
<td>✓</td>
</tr>
<tr>
<td>Surface-less context creation</td>
<td>✓</td>
</tr>
<tr>
<td>Texture Storage</td>
<td>✓</td>
</tr>
<tr>
<td>Pixel Buffer Objects</td>
<td>✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ES Features</th>
<th>Tegra 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 bit Depth</td>
<td>✓</td>
</tr>
<tr>
<td>FP16 Texture Filtering</td>
<td>✓</td>
</tr>
<tr>
<td>Multisampling</td>
<td>✓</td>
</tr>
<tr>
<td>Occlusion Queries</td>
<td>✓</td>
</tr>
<tr>
<td>Non-square Matrices</td>
<td>✓</td>
</tr>
<tr>
<td>Multiple Render Targets</td>
<td>✓</td>
</tr>
<tr>
<td>RGBA, RGB8, RGBA8, RGBA65</td>
<td>✓</td>
</tr>
<tr>
<td>RGBA8, RGBA4, RGB5_A1</td>
<td>✓</td>
</tr>
<tr>
<td>[R, RG, RGBA][B][UI]</td>
<td>✓</td>
</tr>
</tbody>
</table>

표 1 - Tegra 4 GPU OpenGL ES 기능

Tegra 4 및 Tegra 4i와 Tegra 3의 성능 요인 비교

아래 표에서는 Tegra 3 프로세서와 비교한 Tegra 4 및 4i 프로세서의 상대적인 GPU 유닛 성능 차이를 보여 준다. 이 비교에는 애플리케이션 유닛 수의 차이뿐만 아니라 Tegra 3 프로세서에 비해 향상된 Tegra 4 및 4i 프로세서의 아키텍처 기능과 클럭 속도까지 고려되었다.
Tegra 4 vs Tegra 3 GPU stats

<table>
<thead>
<tr>
<th></th>
<th>Tegra 4/ Tegra 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex Shader</td>
<td>8x</td>
</tr>
<tr>
<td>Fragment ALU</td>
<td>8x</td>
</tr>
<tr>
<td>Pixel Rate</td>
<td>2.6x</td>
</tr>
<tr>
<td>Texture Rate</td>
<td>2.6x</td>
</tr>
<tr>
<td>Memory Rate</td>
<td>2.3x</td>
</tr>
<tr>
<td>Z-Kill Rate</td>
<td>1.3x</td>
</tr>
<tr>
<td>Triangle Rate</td>
<td>1.3x</td>
</tr>
</tbody>
</table>

Tegra 4 - 72 Core GPU @ 672 MHz
4 pixel pipes * 3 ALUs/pipe * 4 MADS/ALU + 6 VPEs * 4 MADS/VPE

Tegra 3 - 12 Core GPU @ 520 MHz
2 pixel pipes * 1 ALU/pipe * 4 MADS/ALU + 1 VPE * 4 MADS/VPE

표 2 - Tegra 4와 Tegra 3의 성능 요인 비교

Tegra 4i vs Tegra 3 GPU stats

<table>
<thead>
<tr>
<th></th>
<th>Tegra 4i/ Tegra 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex Shader</td>
<td>4.5x</td>
</tr>
<tr>
<td>Fragment ALU</td>
<td>9x</td>
</tr>
<tr>
<td>Pixel Rate</td>
<td>1.5x</td>
</tr>
<tr>
<td>Texture Rate</td>
<td>1.5x</td>
</tr>
<tr>
<td>Memory Rate</td>
<td>1.5x</td>
</tr>
<tr>
<td>Z-Kill Rate</td>
<td>1.5x</td>
</tr>
<tr>
<td>Triangle Rate</td>
<td>1.5x</td>
</tr>
</tbody>
</table>

Tegra 4i - 60 Core GPU @ 860 MHz
4 pixel pipes * 6 ALUs/pipe * 4 MADS/ALU + 3 VPEs * 4 MADS/VPE

Tegra 3 - 12 Core GPU @ 416 MHz
2 pixel pipes * 1 ALU/pipe * 4 MADS/ALU + 1 VPE * 4 MADS/VPE

표 3 - Tegra 4i와 Tegra 3의 성능 요인 비교
Tegra 4i GPU 아키텍처 다이어그램

아래에는 NVIDIA® Tegra® 4i 프로세서의 GPU 아키텍처 다이어그램이 나와 있다. 60 개의 GPU 코어가 벤텍스 셰이딩용 12 개, 픽셀 셰이딩용 48 개로 분할되어 있음을 알 수 있다. LTE 베이스밴드 모뎀까지 통합하고 메인스트림 장치에 주로 사용한다는 점을 감안할 때 Tegra 4i SoC 의 그래픽 성능은 상당한 수준이다. 설치 면적과 전력의 효율성을 위해 단일 32 비트 메모리 채널이 사용되었다.

Tegra 4i 프로세서의 픽셀 프래그먼트 셰이더 파이프라인은 Tegra 4 프로세서와 약간 다르게 구성되었다. Tegra 4 프로세서에는 2 개의 픽셀 파이프가 사용되어 밀리미터당 성능이 우수하고 단일 메모리 채널과 보다 효과적으로 작동한다. 픽셀 파이프라인 수가 줄면서 면적이 작아져 파이프당 ALU 를 6 개씩, ALU 당 MAD 유닛을 4 개씩 장착할 수 있었다(면적 및 엔지니어링 비용이 상당히 낮음).

그림 5 - Tegra 4i GPU 아키텍처 다이어그램
아키텍처 효율성

마이크로프로세서의 설계에 있어서는 와트당 성능과 제공 밀리미터당 성능을 최적화하는 것이 중요한 기준이 된다. 이와 관련한 중요한 용어로 "아키텍처 효율성"이라는 용어를 자주 사용한다. 엔비디아 Tegra 프로세서 엔지니어는 와트당 성능 목표와 밀리미터당 성능 목표, 다이 크기 및 소비 전력의 제한 등이 엄격하게 적용되는 상황에서 엔비디아 Tegra 4 프로세서의 GPU에 향상된 기능을 최대한 많이 추가하는 동시에 업계 최고 수준의 그래픽 품질, 기능, 성능을 제공하기 위해 노력했다.

Tegra 4 프로세서가 GFLOP/mm², 필레이트/mm² 등 주요 아키텍처 효율성 지표와 모바일 GPU 벤치마크 기준으로 공신력을 인정받는 GLBench 2.5에서 모바일용 경쟁 제품보다 크게 우위에 있다는 것은 표 4에 잘 나와 있다. Tegra 4 프로세서는 현재 시중에 나와 있는 어떠한 경쟁 모바일 GPU에 비해서도 효율성이 탁월하다. GPU 면적 계산에서는 모든 SoC를 28nm 공정으로 정규화했다. 본 문서 작성 시점에는 아직 Tegra 4i 프로세서의 자세한 성능 지표를 공개할 수 없는 상태이므로 이어지는 몇 개 섹션에서 Tegra 4i 프로세서에 대한 설명은 제외되었다.

Tegra 4 GPU Architecture Efficiency

<table>
<thead>
<tr>
<th></th>
<th>Tegra 4</th>
<th>8064</th>
<th>5250</th>
<th>A5x</th>
<th>A6x</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPU Area mm²</td>
<td>10.5</td>
<td>19.2</td>
<td>18.5</td>
<td>26.2</td>
<td>37.3</td>
</tr>
<tr>
<td>Fill Rate</td>
<td>2688</td>
<td>3200</td>
<td>2132</td>
<td>2000</td>
<td>2200</td>
</tr>
<tr>
<td>Fill / mm²</td>
<td>256</td>
<td>167</td>
<td>115</td>
<td>76</td>
<td>59</td>
</tr>
<tr>
<td>GFLOPS</td>
<td>97</td>
<td>51</td>
<td>34</td>
<td>32</td>
<td>70</td>
</tr>
<tr>
<td>GFLOPS / mm²</td>
<td>9.2</td>
<td>2.7</td>
<td>1.8</td>
<td>1.2</td>
<td>1.9</td>
</tr>
<tr>
<td>GLBench 2.5</td>
<td>54</td>
<td>30</td>
<td>29</td>
<td>25</td>
<td>52</td>
</tr>
<tr>
<td>GLBench 2.5 / mm²</td>
<td>5.1</td>
<td>1.6</td>
<td>1.6</td>
<td>1.0</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Area normalized to 28nm

표 4 – Tegra 4와 경쟁 GPU의 아키텍처 효율성 비교 데이터
마찬가지로 표 5는 경쟁 제품의 모바일 GPU 설계에 비해 NVIDIA® Tegra® 4 프로세서의 GPU 아키텍처가 얼마나 더 효율적인지를 한눈에 확인할 수 있도록 위의 데이터를 그래픽으로 보여 준다.

표 5 - Tegra 4와 경쟁 GPU의 아키텍처 효율성 비교 차트

경쟁 제품 벤치마크 결과

다음 벤치마크 차트는 종합 GPU 벤치마크를 대표하는 Basemark Taiji와 GLBench 2.5에서의 NVIDIA® Tegra® 4 프로세서 성능 결과를 보여 준다. 본 문서를 작성할 당시에는 Tegra 4 프로세서가 출시 전 최적화 단계를 거치는 중이었고 참조 태블릿에서 Tegra 4 프로세서의 수치를 측정한 것이기 때문에 수치가 변경될 수 있다. Qualcomm Snapdragon S4 Pro 데이터는 HTC Droid DNA 폰에서 측정되었으며, Qualcomm Snapdragon 800은 Qualcomm 마케팅 자료를 근거로 추정한 결과이다.
고급 전력 관리 기능

Tegra 4 프로세서의 GPU 코어는 다음과 같은 몇 가지 고급 전력 관리 기능을 구현하여 소비 전력을 줄입니다.

- 다단계 클럭 게이팅: GPU 는 휴대 상태에서 다양한 유닛의 클럭을 정지시키는 여러 단계의 클럭 게이팅을 구현한다. GPU 코어 내에서 다양한 휴대 물리클럭을 클럭 게이팅할 수 있는 함수 레벨의 클럭 게이팅 메커니즘을 구현한다. 예를 들어 파일드라이버에서 빠른 채팅 작업을 수행하지 않을 때는 VPE 유닛을 클럭 게이팅하여 다른 비트ecs 채팅 작업을 수행할 때까지 절전 상태로 전환할 수 있다. 마찬가지로 픽셀 채터 유닛이 텍스쳐 인출할 필요가 없는 상술프레임과 같은 작업을 수행 경우에도 텍스쳐 유닛을 클럭 게이팅할 수 있다. 또한 GPU 가 동적으로 렌더링하는 것이 아니라 단순히 장치 디스플레이를 새로 고칠 때는 메모리 컨트롤러가 때때로 시스템 메모리를 절전 상태로 전환할 수 있다.
• 디스플레이 요청 그룹화: GPU는 여러 디스플레이 요청을 그룹화하고 그룹화된 요청을 버스트 단위로 시스템 메모리에 보낸다. 그런 다음 GPU는 타이머를 통해 메모리 컨트롤러에 다음 요청 버스트 시점에 대해 알린다. 이러한 GPU 디스플레이 요청 버스트 간의 유형 간격에는 메모리 컨트롤러가 시스템 메모리를 절전 상태로 전환할 기회를 적극적이면서 동적인 방식으로 찾는다.

• DVFS(동적 전압 및 주파수 조정): GPU 사용률이 낮은 기간에는 GPU 클럭과 전압을 낮은 수준으로 떨어뜨려 유형 전력 소모를 크게 줄일 수 있다. 떨어지는 작업이 감지되면 주파수 및 전압 레벨을 적절한 작동 값으로 즉시 높여 고성능을 보장한다. DVFS 소프트웨어는 애플리케이션에서 요구되는 성능을 제공하는 데 필요한 레벨까지만 전압과 주파수를 지능적으로 높인다. DVFS 알고리즘은 주파수 레벨을 매우 미세하게 제어하며 주파수를 최소 1MHz 단위로 높이거나 낮출 수 있다.

Tegra GPU 및 메모리 컨트롤러 인터페이스

28nm 제조 공정으로 제작된 NVIDIA® Tegra® 4 SoC 에는 성능 향상을 위해 이중 채널(2 x 32 비트) 메모리 서브시스템이 채택되었다. 이 메모리 서브시스템은 CPU, GPU, 비디오 및 오디오를 비롯한 여러 SoC 처리 코어에서 공유된다. 최대 4GB의 물리적 메모리를 어드레싱할 수 있다. Tegra 4 프로세서와 4i 프로세서가 모두 지원하는 메모리 유형으로는 DDR3L-1866과 LPDDR3-1866이 있으며, Tegra 4i 프로세서는 LPDDR3-2133도 지원한다.

Tegra MC(메모리 컨트롤러)는 중요한 CPU 및 GPU 요청에 대해 최소 지연을 액세스를 제공하면서 메모리 활용도를 극대화한다. 요청의 우선 순위를 지정하여 메모리 액세스 효율성과 활용도를 최적화하고 시스템 소모 전력을 최소화하기 위해 아비타가 사용된다. MC는 모든 내부 장치에 주 메모리에 대한 액세스를 제공하며, 공유 메모리 리소스에 대한 액세스를 최적화하고 프로그래밍 가능한 파라미터에 따라 지연율과 효율성의 균형을 조정하여 최상의 시스템 성능을 제공한다.
NVIDIA 가 제작한 이 MC 는 Tegra 프로세서 GPU 의 고유한 요구 사항에 맞추어 고도로 튜닝되었고 GPU 성능을 높이고 전력 소모를 줄이기 위해 다음과 같은 몇 가지 최적화 기술이 적용되었다.

- 동적 클럭 속도 제어(Dynamic Clock Speed Control, DCSC): DCSC 는 메모리 컨트롤러가 GPU 코어에서 시스템 메모리 액세스를 위해 전달하는 고급 지시자에 따라 작동 주파수를 신속하게 끌어올리고 GPU 가 메모리 액세스를 완료하면 신속하게 작동 주파수를 절전 레벨로 낮추게 한다.

- GPU 중심 메모리 중재: MC 는 고급 중재 스키마를 구현하여 시스템 메모리에 대한 여러 클라이언트의 액세스를 효율적으로 관리한다. MC 코어에는 GPU 클라이언트에서 들어오는 메모리 액세스 요청의 유형과 긴급성에 대한 고급 정보가 담겨 있으며, 대역폭을 많이 소모하는 렌더링 및 지오메트리 요청에 대해 고대역폭을 제공하는 고도로 세분화된 중재 스키마를 구현한다.

- GPU 요청 그룹화: 현재 열려 있는 뱅크에 포함되어 있지 않은 메모리 영역에 대한 액세스 요청이 있을 경우 MC는 현재 열려 있는 뱅크를 닫은 다음 원하는 메모리 셀 또는 영역이 포함된 새 뱅크를 활성화해야 한다. 이 프로세스는 지연율과 대역폭에 영향을 줄 뿐 아니라 전력 소모도 심하다. NVIDIA® Tegra® 4 프로세서의 GPU 는 현재 시스템 메모리 구성의 인식하여 액세스 패턴을 최적화한다. GPU 는 같은 메모리 뱅크에 액세스하는 메모리 요청을 한데 그룹화할 수 있다. 또한 MC 컨트롤러는 메모리 뱅크 액세스 패턴에 따라 개별 메모리 요청의 순서를 그룹 내에서 조정할 수 있다. 이러한 기능은 잇자 메모리 뱅크 전환을 억제하여 메모리 액세스의 효율성을 높이고 전력 소모를 줄여 준다.

- Tegra 4/Tegra 4i의 향상된 메모리 컨트롤러와 Tegra 3 비교: Tegra 4 및 4i 프로세서의 메모리 컨트롤러에는 MC 인터페이스와 클라이언트 인터페이스 모두에 추가 버퍼링이 포함되어 있다. 높은 버스트 대역폭과 더 여유로운 지연 허용 범위는 더 큰 폭의 전력 절감을 가능하게 한다. 또한 향상된 요청 그룹화 기능은 메모리의 효율성을 개선해 준다.
모바일 게임에서 고급 그래픽 효과 지원

NVIDIA® Tegra® 4 프로세서의 GPU는 Tegra 3 프로세서보다 최고 6 배에 달하는 원시 셰이딩 성능을 제공한다. 따라서 게임 개발자들이 고급 그래픽 효과, 세부적인 모델, 사실적인 환경을 이용하여 차별화되고 시각적으로 풍부한 모바일 게임 경험을 제공할 수 있다.

표 7에는 Tegra 4 프로세서의 뛰어난 성능과 기능 덕분에 모바일 게임에서 구현할 수 있게 된 수많은 고급 그래픽 효과 중 일부가 정리되어 있다.

<table>
<thead>
<tr>
<th>Tegra 4 기능</th>
<th>게임의 그래픽 효과</th>
</tr>
</thead>
<tbody>
<tr>
<td>최고 6 배 높은 지오메트리 및 버텍스 셰이딩 성능</td>
<td>더 사실적인 캐릭터 모델</td>
</tr>
<tr>
<td></td>
<td>더 복잡한 스킨이 적용된 캐릭터</td>
</tr>
<tr>
<td></td>
<td>더 실감나는 군중 장면 표현</td>
</tr>
<tr>
<td></td>
<td>바위, 식물, 산악 지형 등 더 사실적인 지오메트리 파티클</td>
</tr>
<tr>
<td></td>
<td>더 사실적인 물결, 소용돌이 효과 등을 표현하기 위한 향상된 동적 메시</td>
</tr>
<tr>
<td>긴 이 및 세도우 텍스처 지원</td>
<td>조명의 변화, 다중 광원, 캐스케이드 세도우 맵(Cascaded Shadow Map) 등을 고려하여 더 사실적인 게임 내 세도우 표현</td>
</tr>
<tr>
<td>고급 산술 함수를 지원함으로써 더 높은 픽셀 셰이딩 성능 제공</td>
<td>광활하고 상세한 지형 생성</td>
</tr>
<tr>
<td></td>
<td>로우 폴리곤 모델의 디테일 향상</td>
</tr>
<tr>
<td></td>
<td>게임 내 HDR(High Dynamic Range) 조명 표현</td>
</tr>
<tr>
<td></td>
<td>향상된 동적 리플렉션, 글로벌 일루미네이션 및 더 사실적인 조명 효과를 구현하는 큐브 매핑</td>
</tr>
<tr>
<td></td>
<td>피부, 비춰, 금속 등의 객체에서 더 사실적인 반투명 효과를 구현하는</td>
</tr>
</tbody>
</table>
하부 표면 분산(Subsurface Scattering) 효과

표 7 - 더 풍부한 게임 시각 효과를 제공하는 Tegra 4 GPU의 향상된 기능

다음 스크린샷은 3가지 게임(Nutgee의 RU Golf THD, Exor Studios의 Zombie Driver THD, N3V의 Dead on Arrival 2)에 대해 NVIDIA® Tegra® 4 프로세서를 사용해 향상된 버전과 Tegra 4 프로세서를 사용하지 않아 향상되지 않은 버전을 비교하여 보여 준다. Tegra 4 프로세서로 향상된 버전에서 시각 효과의 품질이 크게 높아진 것을 알 수 있다.

그림 6 - Nutgee의 RU Golf THD
NVIDIA® Tegra® 프로세서가 고유하게 지원하는 이러한 고급 시각 효과를 통해 게임 개발자는 Tegra 프로세서를 사용하지 않는 장치용 게임과 시각적으로 차별화된 뛰어난 게임 환경을

그림 7 - N3V의 Dead on Arrival 2

그림 8 - Exor Studios의 Zombie Driver THD
제공할 수 있다. 위에 나와 있는 게임의 개발자들은 Tegra 4 프로세서의 GPU 기능뿐만 아니라 그래픽 및 게임 분야와 관련한 엔비디아의 풍부한 경험이까지 활용해 경쟁력 있고 장르를 선도하는 게임 환경을 탄생시켰다.

이외에도 Tegra 4 프로세서의 GPU 성능과 퀄드 코어 CPU 컴퓨лекс는 게임 개발자가 실감나는 물리적 효과, 동적 조명 효과, HDR 텍스처, 고급 세도우 효과, 더 세밀한 지오메트리 디테일, 하부 표면 분산, 동적 리플렉션 등 PC 및 콘솔급의 기능이 포함된 게임을 개발할 수 있게 해준다.

엔비디아 Tegra 프로세서 지원 장치에서 실행되는 수많은 게임이 경쟁 장치에서 실행될 때보다 시각적으로 훨씬 뛰어난 것은 단순히 고급 하드웨어 기능 때문만이 아니라 엔비디아가 제공하는 소프트웨어 개발 지원과 개발 툴 덕분이기도 하다는 사실을 간과해서는 안 된다. 엔비디아는 게임 개발자들이 GPU 아키텍처에 최적화된 맞춤형 알고리즘을 사용하여 뛰어난 그래픽 효과를 구현할 수 있도록 다년간 지원해왔다. 앞으로도 엔비디아는 개발자들이 Tegra 프로세서 장치에서 최고 품질의 게임 컨텐츠를 개발할 수 있도록 개발 및 디버깅 툴에 대한 툴을 아끼지 않을 것이다. 이러한 툴은 엔비디아 TegraZone™ Android 애플리케이션을 통해 최종 사용자도 쉽게 찾고 액세스할 수 있다.

엔비디아는 오늘날 모바일 개발자들의 목소리에 귀를 기울여 개발자들이 플랫폼별 세부 사항을 파악하는 데 시간을 허비하는 대신 경쟁력 있는 게임 타이틀들과 고성능 애플리케이션의 개발에 주력할 수 있도록 하는 데 필요한 툴을 제공하고 있다.

Tegra Profiler for Android 는 캡처된 프로파일링 데이터를 대화형 보기로 제공하여 전반적인 애플리케이션 성능을 높이는 데 도움을 주는 멀티 코어 CPU 샘플링 프로파일러이다.
마지막으로, PerfHUD ES는 Tegra 프로세서 기반 장치에서 OpenGL ES 애플리케이션에 대한 심층적인 분석 정보를 제공하여 가장 필요한 부분을 최적화할 수 있게 한다. 디버깅 기능은 GPU 성능과 병목 지점에 대한 정보를 포괄적으로 제공하여 성능 및 렌더링과 관련해 발생하는 이상 현상의 원인을 찾는 데 도움을 준다.

그림 9 - Tegra 개발 툴

개발 툴은 작업에 방해가 되지 않으면서 개발자가 본연의 작업을 수행할 수 있도록 해 주어야 한다. 엔비디아의 Tegra 개발자 툴은 개발자가 NVIDIA® Tegra 프로세서를 기반으로 콘솔 풀질의 게임을 쉽고 빠르게 만들어낼 수 있게 함으로써 이를 실현한다.

결론

모바일 사용 모델이 점점 더 빠른 그래픽 처리 속도를 필요로 한다는 점을 감안하면 모바일 장치 분야에서 더 높은 풀질의 GPU 서브시스템에 대한 요구는 계속 높아질 것이다. 스마트폰과 태블릿에서 최상의 사용 환경을 구현하기 위해서는 응답 성능이 뛰어난 그래픽 사용자 인터페이스, 빠른 웹 브라우징 기능, 시각적으로 풍부한 3D 게임을 제공하고 더 높은 해상도의 디스플레이를 지원할 수 있어야 한다. 엔비디아 Project Shield 포터블이나 Ouya 유형의 장치와
같은 모바일 3D 게임 시스템에서 더 사실적인 게임 환경과 캐릭터를 처리하고 표시하기 위해서는 GPU 속도가 무엇보다 중요하다는 것은 두말할 필요도 없다.

최근에는 시각적 계기판, 3D 네비게이션 기능, 지능형 운전 보조 장치, HD 엔터테인먼트 시스템 등이 장착되면서 차량 정보 시스템에도 더 높은 그래픽 성능이 요구되고 있다. 또한 NVIDIA® Chimera™ 아키텍처(엔비디아의 Computational Photography Architecture)와 같은 새로운 활용 사례에서도 강력한 GPU 가 요구된다.

엔비디아 Tegra 4 프로세서 제품군의 GPU 서브시스템은 앞서 설명한 모든 그래픽 기능을 모바일 장치에서 지원하며, 주요 모바일 GPU 벤치마크 결과에서 보듯이 경쟁 제품보다 훨씬 뛰어난 성능을 자랑한다. 2013 년에 Tegra 4 프로세서는 시각적 컴퓨팅 기능에 있어서 모바일 업계를 선도할 것으로 기대된다.

부록 A: Tegra 4 GPU 벤치마크

<table>
<thead>
<tr>
<th>Tegra 4 GPU</th>
<th>GLBench 2.5 HD Egypt (1080p offscreen)</th>
<th>GLBench 2.5 HD Classic (720p offscreen)</th>
<th>Basemark ES 2 Hoverjet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>57</td>
<td>274</td>
<td>59</td>
</tr>
</tbody>
</table>

부록 B: Tegra 4/4i 에서 지원되는 비디오 및 오디오 형식

<table>
<thead>
<tr>
<th>비디오</th>
</tr>
</thead>
<tbody>
<tr>
<td>디코딩</td>
</tr>
<tr>
<td>인코딩</td>
</tr>
<tr>
<td>오디오</td>
</tr>
<tr>
<td>디코딩</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td>인코딩</td>
</tr>
</tbody>
</table>
고지
논평, 의견, NVIDIA 설계 사양, 참조 보드, 파일, 그림, 진단, 목록 및 기타 문서(통칭 "자료")를 비롯하여 본 백서에서 제공하는 모든 정보는 "있는 그대로" 제공됩니다. NVIDIA는 자료와 관련하여 명시적, 묵시적, 법적 또는 기타 어떠한 형태의 보증도 하지 않으며, 비침해성, 상품성 및 특정 목적이에의 적합성과 관련한 모든 묵시적 보증을 명시적으로 부인합니다.

여기에 포함된 정보는 정확하고 신뢰할 수 있다는 믿음에 따라 제공됩니다. 단, NVIDIA Corporation은 그러한 정보의 사용으로 인해 발생하는 결과나 그 사용으로 인해 발생하는 특허권 또는 기타 제3자 권리의 침해에 대해서 책임을 지지 않습니다. NVIDIA Corporation의 특허 또는 특허권상 어떠한 사용권도 묵시적 또는 다른 방식으로 허용되지 않습니다. 본 발행물에 언급된 사양은 별도의 통보 없이 변경될 수 있습니다. 본 발행물은 이전에 제공된 모든 정보에 우선하며 그러한 정보를 대체합니다. NVIDIA Corporation의 명시적인 서면 등의 없이는 생명 유지 장치 또는 시스템의 중요 구성 요소로 사용이 허용되지 않습니다.

상표
NVIDIA, NVIDIA 로고, Chimera 및 Tegra는 미국 및 기타 국가에서NVIDIA Corporation의 상표 또는 등록상표입니다. 기타 회사명과 제품명은 관련된 해당 회사의 상표일 수 있습니다.

저작권
© 2013 NVIDIA Corporation. All rights reserved.