Who should you thank for this talk?

- Jason Sanders
- Senior Software Engineer, NVIDIA
- Co-author of *CUDA by Example*
What is CUDA?

- **CUDA Architecture**
 - Expose general-purpose GPU computing as first-class capability
 - Retain traditional DirectX/OpenGL graphics performance

- **CUDA C**
 - Based on industry-standard C
 - A handful of language extensions to allow heterogeneous programs
 - Straightforward APIs to manage devices, memory, etc.

- This talk will introduce you to CUDA C
Introduction to CUDA C

- What will you learn today?
 - Start from “Hello, World!”
 - Write and launch CUDA C kernels
 - Manage GPU memory
 - Run parallel kernels in CUDA C
 - Parallel communication and synchronization
 - Race conditions and atomic operations
CUDA C Prerequisites

- You (probably) need experience with C or C++
- You do not need any GPU experience
- You do not need any graphics experience
- You do not need any parallel programming experience
CUDA C: The Basics

- **Terminology**
 - **Host** - The CPU and its memory (host memory)
 - **Device** - The GPU and its memory (device memory)

Note: Figure Not to Scale
Hello, World!

```c
int main( void ) {
    printf( "Hello, World!\n" );
    return 0;
}
```

- This basic program is just standard C that runs on the host

- NVIDIA’s compiler (nvcc) will not complain about CUDA programs with no device code

- At its simplest, CUDA C is just C!
Hello, World! with Device Code

__global__ void kernel(void) {
}

int main(void) {
 kernel<<<1,1>>>();
 printf("Hello, World!\n");
 return 0;
}

- Two notable additions to the original “Hello, World!”
Hello, World! with Device Code

```c
__global__ void kernel( void ) {
}
```

- **CUDA C keyword** `__global__` indicates that a function
 - Runs on the device
 - Called from host code

- **nvcc** splits source file into host and device components
 - NVIDIA’s compiler handles device functions like `kernel()`
 - Standard host compiler handles host functions like `main()`
 - `gcc`
 - Microsoft Visual C
Hello, World! with Device Code

```c
int main( void ) {
    kernel<<< 1, 1 >>>();
    printf( "Hello, World!\n" );
    return 0;
}
```

- Triple angle brackets mark a call from host code to device code
 - Sometimes called a “kernel launch”
 - We’ll discuss the parameters inside the angle brackets later

- This is all that’s required to execute a function on the GPU!

- The function `kernel()` does nothing, so this is fairly anticlimactic...
A More Complex Example

- A simple kernel to add two integers:

  ```c
  __global__ void add( int *a, int *b, int *c ) {
      *c = *a + *b;
  }
  ```

- As before, `__global__` is a CUDA C keyword meaning
 - `add()` will execute on the device
 - `add()` will be called from the host
A More Complex Example

- Notice that we use pointers for our variables:

```c
__global__ void add( int *a, int *b, int *c ) {
    *c = *a + *b;
}
```

- `add()` runs on the device...so `a`, `b`, and `c` must point to device memory

- How do we allocate memory on the GPU?
Memory Management

- Host and device memory are distinct entities
 - Device pointers point to GPU memory
 - May be passed to and from host code
 - May not be dereferenced from host code
 - Host pointers point to CPU memory
 - May be passed to and from device code
 - May not be dereferenced from device code

- Basic CUDA API for dealing with device memory
 - `cudaMalloc()`, `cudaFree()`, `cudaMemcpy()`
 - Similar to their C equivalents, `malloc()`, `free()`, `memcpy()`
A More Complex Example: add()

- Using our add() kernel:

```c
__global__ void add( int *a, int *b, int *c ) {
    *c = *a + *b;
}
```

- Let’s take a look at main()...
A More Complex Example: main()

```c
int main( void ) {
    int a, b, c;           // host copies of a, b, c
    int *dev_a, *dev_b, *dev_c; // device copies of a, b, c
    int size = sizeof( int ); // we need space for an integer

    // allocate device copies of a, b, c
    cudaMalloc( (void**)&dev_a, size );
    cudaMalloc( (void**)&dev_b, size );
    cudaMalloc( (void**)&dev_c, size );

    a = 2;
    b = 7;
}
```
A More Complex Example: main() (cont)

// copy inputs to device
cudaMemcpy(dev_a, &a, size, cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, &b, size, cudaMemcpyHostToDevice);

// launch add() kernel on GPU, passing parameters
add<<< 1, 1 >>>(dev_a, dev_b, dev_c);

// copy device result back to host copy of c
cudaMemcpy(&c, dev_c, size, cudaMemcpyDeviceToHost);

cudaFree(dev_a);
cudaFree(dev_b);
cudaFree(dev_c);
return 0;
}
Parallel Programming in CUDA C

- But wait...GPU computing is about massive parallelism
- So how do we run code in parallel on the device?
- Solution lies in the parameters between the triple angle brackets:

 \[
 \text{add}^{<<<1, 1>>>(\text{dev}_a, \text{dev}_b, \text{dev}_c);}
 \]

 \[
 \downarrow
 \]

 \[
 \text{add}^{<<<N, 1>>>(\text{dev}_a, \text{dev}_b, \text{dev}_c);}
 \]

- Instead of executing `add()` once, `add()` executed \(N \) times in parallel
Parallel Programming in CUDA C

- With `add()` running in parallel...let's do vector addition

- Terminology: Each parallel invocation of `add()` referred to as a `block`

- Kernel can refer to its block’s index with the variable `blockIdx.x`

- Each block adds a value from `a[]` and `b[]`, storing the result in `c[]`:

  ```c
  __global__ void add( int *a, int *b, int *c ) {
    c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
  }
  ```

- By using `blockIdx.x` to index arrays, each block handles different indices
Parallel Programming in CUDA C

- We write this code:

  ```c
  __global__ void add( int *a, int *b, int *c ) {
    c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
  }
  ```

- This is what runs in parallel on the device:

<table>
<thead>
<tr>
<th>Block 0</th>
<th>Block 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c[0] = a[0] + b[0])</td>
<td>(c[1] = a[1] + b[1])</td>
</tr>
<tr>
<td>Block 2</td>
<td>Block 3</td>
</tr>
</tbody>
</table>
Parallel Addition: add()

- Using our newly parallelized `add()` kernel:

  ```c
  __global__ void add( int *a, int *b, int *c ) {
    c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
  }
  ```

- Let’s take a look at `main()`...
Parallel Addition: main()

#define N 512
int main(void) {
 int *a, *b, *c; // host copies of a, b, c
 int *dev_a, *dev_b, *dev_c; // device copies of a, b, c
 int size = N * sizeof(int); // we need space for 512 integers

 // allocate device copies of a, b, c
 cudaMalloc((void**)&dev_a, size);
 cudaMalloc((void**)&dev_b, size);
 cudaMalloc((void**)&dev_c, size);

 a = (int*)malloc(size);
 b = (int*)malloc(size);
 c = (int*)malloc(size);

 random_ints(a, N);
 random_ints(b, N);
Parallel Addition: main() (cont)

// copy inputs to device
cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

// launch add() kernel with N parallel blocks
add<<< N, 1 >>>(dev_a, dev_b, dev_c);

// copy device result back to host copy of c
cudaMemcpy(c, dev_c, size, cudaMemcpyDeviceToHost);

free(a); free(b); free(c);
cudaFree(dev_a);
cudaFree(dev_b);
cudaFree(dev_c);
return 0;
Review

- Difference between “host” and “device”
 - Host = CPU
 - Device = GPU

- Using `__global__` to declare a function as device code
 - Runs on device
 - Called from host

- Passing parameters from host code to a device function
Review (cont)

- Basic device memory management
 - cudaMalloc()
 - cudaMemcpy()
 - cudaFree()

- Launching parallel kernels
 - Launch N copies of add() with: add<<<N, 1 >>>();
 - Used blockIdx.x to access block’s index
Threads

- Terminology: A block can be split into parallel *threads*

- Let’s change vector addition to use parallel threads instead of parallel blocks:

  ```c
  __global__ void add( int *a, int *b, int *c ) {
      c[ threadIdx.x ] = a[ threadIdx.x ] + b[ threadIdx.x ];
  }
  ```

- We use `threadIdx.x` instead of `blockIdx.x` in `add()`

- `main()` will require one change as well...
Parallel Addition (Threads): main()

#define N 512
int main(void) {
 int *a, *b, *c; //host copies of a, b, c
 int *dev_a, *dev_b, *dev_c; //device copies of a, b, c
 int size = N * sizeof(int); //we need space for 512 integers

 // allocate device copies of a, b, c
 cudaMalloc((void**)&dev_a, size);
 cudaMalloc((void**)&dev_b, size);
 cudaMalloc((void**)&dev_c, size);

 a = (int*)malloc(size);
 b = (int*)malloc(size);
 c = (int*)malloc(size);

 random_ints(a, N);
 random_ints(b, N);
Parallel Addition (Threads): main() (cont)

 // copy inputs to device
 cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);
 cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

 // launch add() kernel with N threads
 add<<< N, N >>>(dev_a, dev_b, dev_c);

 // copy device result back to host copy of c
 cudaMemcpy(c, dev_c, size, cudaMemcpyDeviceToHost);

 free(a); free(b); free(c);
 cudaFree(dev_a);
 cudaFree(dev_b);
 cudaFree(dev_c);
 return 0;

Using Threads **And** Blocks

- We’ve seen parallel vector addition using
 - Many blocks with 1 thread apiece
 - 1 block with many threads

- Let’s adapt vector addition to use lots of *both* blocks and threads

- After using threads and blocks together, we’ll talk about *why* threads

- First let’s discuss data indexing...
Indexing Arrays With Threads And Blocks

- No longer as simple as just using `threadIdx.x` or `blockIdx.x` as indices

- To index array with 1 thread per entry (using 8 threads/block)

 If we have \(M \) threads/block, a unique array index for each entry given by

 \[
 \text{int} \ \text{index} = \text{threadIdx.x} + \text{blockIdx.x} \times M;
 \]

 or

 \[
 \text{int} \ \text{index} = \quad x \quad + \quad y \quad \times \text{width};
 \]
Indexing Arrays: Example

- In this example, the red entry would have an index of 21:

```c
int index = threadIdx.x + blockIdx.x * M;
= 5       +     2      * 8;
= 21;
```
Addition with Threads and Blocks

- The `blockDim.x` is a built-in variable for threads per block:
  ```c
  int index = threadIdx.x + blockIdx.x * blockDim.x;
  ```

- A combined version of our vector addition kernel to use blocks and threads:
  ```c
  __global__ void add( int *a, int *b, int *c ) {
    int index = threadIdx.x + blockIdx.x * blockDim.x;
    c[index] = a[index] + b[index];
  }
  ```

- So what changes in `main()` when we use both blocks and threads?
Parallel Addition (Blocks/Threads): main()

#define N (2048*2048)
#define THREADS_PER_BLOCK 512

int main(void) {
 int *a, *b, *c; // host copies of a, b, c
 int *dev_a, *dev_b, *dev_c; // device copies of a, b, c
 int size = N * sizeof(int); // we need space for N integers

 // allocate device copies of a, b, c
 cudaMalloc((void**)&dev_a, size);
 cudaMalloc((void**)&dev_b, size);
 cudaMalloc((void**)&dev_c, size);

 a = (int*)malloc(size);
 b = (int*)malloc(size);
 c = (int*)malloc(size);

 random_ints(a, N);
 random_ints(b, N);
Parallel Addition (Blocks/Threads): main()

// copy inputs to device
cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

// launch add() kernel with blocks and threads
add<<< N/THREADS_PER_BLOCK, THREADS_PER_BLOCK >>>(dev_a, dev_b, dev_c);

// copy device result back to host copy of c
cudaMemcpy(c, dev_c, size, cudaMemcpyDeviceToHost);

free(a); free(b); free(c);
cudaFree(dev_a);
cudaFree(dev_b);
cudaFree(dev_c);
return 0;
}
Why Bother With Threads?

- Threads seem unnecessary
 - Added a level of abstraction and complexity
 - What did we gain?

- Unlike parallel blocks, parallel threads have mechanisms to
 - Communicate
 - Synchronize

- Let’s see how...
Dot Product

- Unlike vector addition, dot product is a *reduction* from vectors to a scalar.

\[
c = \vec{a} \cdot \vec{b} = (a_0, a_1, a_2, a_3) \cdot (b_0, b_1, b_2, b_3) = a_0 b_0 + a_1 b_1 + a_2 b_2 + a_3 b_3
\]
Dot Product

- Parallel threads have no problem computing the pairwise products:

```
__global__ void dot(int *a, int *b, int *c) {
    // Each thread computes a pairwise product
    int temp = a[threadIdx.x] * b[threadIdx.x];
```

- So we can start a dot product CUDA kernel by doing just that:
Dot Product

- But we need to share data between threads to compute the final sum:

```c
__global__ void dot( int *a, int *b, int *c ) {
    // Each thread computes a pairwise product
    int temp = a[threadIdx.x] * b[threadIdx.x];

    // Can’t compute the final sum
    // Each thread’s copy of ‘temp’ is private
}
```
Sharing Data Between Threads

- Terminology: A block of threads shares memory called... *shared memory*

- Extremely fast, on-chip memory (user-managed cache)

- Declared with the `__shared__` CUDA keyword

- Not visible to threads in other blocks running in parallel
Parallel Dot Product: \texttt{dot()}

- We perform parallel multiplication, serial addition:

```c
#define N 512
__global__ void dot(int *a, int *b, int *c) {
  // Shared memory for results of multiplication
  __shared__ int temp[N];
  temp[threadIdx.x] = a[threadIdx.x] * b[threadIdx.x];

  // Thread 0 sums the pairwise products
  if (0 == threadIdx.x) {
    int sum = 0;
    for (int i = 0; i < N; i++)
      sum += temp[i];
    *c = sum;
  }
}
```
Parallel Dot Product Recap

- We perform parallel, pairwise multiplications
- Shared memory stores each thread’s result
- We sum these pairwise products from a single thread
- Sounds good...but we’ve made a huge mistake
Faulty Dot Product Exposed!

- Step 1: In parallel, each thread writes a pairwise product
  ```
  __shared__ int temp
  ```

- Step 2: Thread 0 reads and sums the products
  ```
  __shared__ int temp
  ```

- But there’s an assumption hidden in Step 1...
Read-Before-Write Hazard

- Suppose thread 0 finishes its write in step 1
- Then thread 0 reads index 12 in step 2
- Before thread 12 writes to index 12 in step 1?

This read returns garbage!
Synchronization

- We need threads to wait between the sections of `dot()`:

```c
__global__ void dot( int *a, int *b, int *c ) {
    __shared__ int temp[N];
    temp[threadIdx.x] = a[threadIdx.x] * b[threadIdx.x];

    // * NEED THREADS TO SYNCHRONIZE HERE *
    // No thread can advance until all threads
    // have reached this point in the code

    // Thread 0 sums the pairwise products
    if( 0 == threadIdx.x ) {
        int sum = 0;
        for( int i = 0; i < N; i++ )
            sum += temp[i];
        *c = sum;
    }
}
```
__syncthreads()

- We can synchronize threads with the function __syncthreads()

- Threads in the block wait until *all* threads have hit the __syncthreads()

- Threads are *only* synchronized within a block
Parallel Dot Product: \texttt{dot()}

\begin{verbatim}
__global__ void dot(int *a, int *b, int *c) {
 __shared__ int temp[N];
 temp[threadIdx.x] = a[threadIdx.x] * b[threadIdx.x];

 __syncthreads();

 if(0 == threadIdx.x) {
 int sum = 0;
 for(int i = 0; i < N; i++)
 sum += temp[i];
 *c = sum;
 }
}
\end{verbatim}

- With a properly synchronized \texttt{dot()} routine, let’s look at \texttt{main()}
Parallel Dot Product: main()

#define N 512
int main(void) {
 int *a, *b, *c; // copies of a, b, c
 int *dev_a, *dev_b, *dev_c; // device copies of a, b, c
 int size = N * sizeof(int); // we need space for 512 integers

 // allocate device copies of a, b, c
 cudaMalloc((void**)&dev_a, size);
 cudaMalloc((void**)&dev_b, size);
 cudaMalloc((void**)&dev_c, sizeof(int));

 a = (int *)malloc(size);
 b = (int *)malloc(size);
 c = (int *)malloc(sizeof(int));

 random_ints(a, N);
 random_ints(b, N);
Parallel Dot Product: main()

```
// copy inputs to device
cudaMemcpy( dev_a, a, size, cudaMemcpyHostToDevice );
cudaMemcpy( dev_b, b, size, cudaMemcpyHostToDevice );

// launch dot() kernel with 1 block and N threads
dot<<< 1, N >>>( dev_a, dev_b, dev_c );

// copy device result back to host copy of c
cudaMemcpy( c, dev_c, sizeof( int ), cudaMemcpyDeviceToHost );

free( a ); free( b ); free( c );
cudaFree( dev_a );
cudaFree( dev_b );
cudaFree( dev_c );
return 0;
```
Review

- Launching kernels with parallel threads
 - Launch `add()` with N threads: `add<<<1, N >>>();`
 - Used `threadIdx.x` to access thread’s index

- Using both blocks and threads
 - Used `(threadIdx.x + blockIdx.x * blockDim.x)` to index input/output
 - N/THREADS_PER_BLOCK blocks and THREADS_PER_BLOCK threads gave us N threads total
Review (cont)

- **Using `__shared__` to declare memory as shared memory**
 - Data shared among threads in a block
 - Not visible to threads in other parallel blocks

- **Using `__syncthreads()` as a barrier**
 - No thread executes instructions after `__syncthreads()` until all threads have reached the `__syncthreads()`
 - Needs to be used to prevent *data hazards*
Multiblock Dot Product

- Recall our dot product launch:
  ```c
  // launch dot() kernel with 1 block and N threads
  dot<<< 1, N >>>( dev_a, dev_b, dev_c );
  ```

- Launching with one block will not utilize much of the GPU

- Let’s write a multiblock version of dot product
Multiblock Dot Product: Algorithm

- Each block computes a sum of its pairwise products like before:
Multiblock Dot Product: Algorithm

- And then contributes its sum to the final result:
Multiblock Dot Product: `dot()`

```c
#define N (2048*2048)
#define THREADS_PER_BLOCK 512
__global__ void dot( int *a, int *b, int *c ) {
    __shared__ int temp[THREADS_PER_BLOCK];
    int index = threadIdx.x + blockIdx.x * blockDim.x;
    temp[threadIdx.x] = a[index] * b[index];

    __syncthreads();

    if( 0 == threadIdx.x ) {
        int sum = 0;
        for( int i = 0; i < THREADS_PER_BLOCK; i++ )
            sum += temp[i];
        *c += sum;
    }
}
```

- But we have a race condition...
- We can fix it with one of CUDA’s atomic operations
Race Conditions

- Terminology: A race condition occurs when program behavior depends upon relative timing of two (or more) event sequences.

- What actually takes place to execute the line in question: `*c += sum;`
 - Read value at address `c`
 - Add `sum` to value
 - Write result to address `c`

 Terminology: Read-Modify-Write

- What if two threads are trying to do this at the same time?
 - Thread 0, Block 0
 - Read value at address `c`
 - Add `sum` to value
 - Write result to address `c`

 - Thread 0, Block 1
 - Read value at address `c`
 - Add `sum` to value
 - Write result to address `c`
Global Memory Contention

Block 0
sum = 3

*c += sum

Read-Modify-Write

Reads 0
Computes 0+3
Writes 3

0
0+3 = 3
3

Block 1
sum = 4

Reads 3
Computes 3+4
Writes 7

3
3+4 = 7
7
Global Memory Contention

Block 0
sum = 3

\[*c += \text{sum}\]

Block 1
sum = 4

Read-Modify-Write

Reads 0
0
Computes 0+3
0+3 = 3
Writes 3
3

Reads 0
0
Computes 0+4
0+4 = 4
Writes 4
4
Atomic Operations

- Terminology: Read-modify-write uninterruptible when atomic

- Many atomic operations on memory available with CUDA C
 - atomicAdd()
 - atomicSub()
 - atomicMin()
 - atomicMax()
 - atomicInc()
 - atomicDec()
 - atomicExch()
 - atomicCAS()

- Predictable result when simultaneous access to memory required

- We need to atomically add sum to c in our multiblock dot product
Multiblock Dot Product: \texttt{dot()} \\

\begin{verbatim}
__global__ void dot(int *a, int *b, int *c) {
 __shared__ int temp[THREADS_PER_BLOCK];
 int index = threadIdx.x + blockIdx.x * blockDim.x;
 temp[threadIdx.x] = a[index] * b[index];

 __syncthreads();

 if (0 == threadIdx.x) {
 int sum = 0;
 for(int i = 0; i < THREADS_PER_BLOCK; i++)
 sum += temp[i];
 atomicAdd(c, sum);
 }
}
\end{verbatim}

- Now let’s fix up \texttt{main()} to handle a multiblock dot product
Parallel Dot Product: main()

```c
#define N (2048*2048)
#define THREADS_PER_BLOCK 512
int main( void ) {
    int *a, *b, *c; // host copies of a, b, c
    int *dev_a, *dev_b, *dev_c; // device copies of a, b, c
    int size = N * sizeof( int ); // we need space for N ints

    // allocate device copies of a, b, c
    cudaMalloc( (void**)&dev_a, size );
    cudaMalloc( (void**)&dev_b, size );
    cudaMalloc( (void**)&dev_c, sizeof( int ) );

    a = (int *)malloc( size );
    b = (int *)malloc( size );
    c = (int *)malloc( sizeof( int ) );

    random_ints( a, N );
    random_ints( b, N );
```
Parallel Dot Product: main()

// copy inputs to device
cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

// launch dot() kernel
dot<<< N/THREADS_PER_BLOCK, THREADS_PER_BLOCK >>>(dev_a, dev_b, dev_c);

// copy device result back to host copy of c
cudaMemcpy(c, dev_c, sizeof(int), cudaMemcpyDeviceToHost);

free(a); free(b); free(c);
cudaFree(dev_a);
cudaFree(dev_b);
cudaFree(dev_c);
return 0;
}
Review

- **Race conditions**
 - Behavior depends upon relative timing of multiple event sequences
 - Can occur when an implied read-modify-write is interruptible

- **Atomic operations**
 - CUDA provides read-modify-write operations guaranteed to be atomic
 - Atomics ensure correct results when multiple threads modify memory
To Learn More CUDA C

- Check out *CUDA by Example*
 - Parallel Programming in CUDA C
 - Thread Cooperation
 - Constant Memory and Events
 - Texture Memory
 - Graphics Interoperability
 - Atomics
 - Streams
 - CUDA C on Multiple GPUs
 - Other CUDA Resources

- For sale here at GTC

Questions

- First my questions
- Now your questions...