CUDA를 활용한 실시간 IMAGE PROCESSING SYSTEM 구현
Overview

- Thin film transistor (TFT) LCD: Inspection Object
 - Type of Defect
 - Type of Inspection

- Instrument Brief
 - Lighting / Focusing
 - Optic Magnification
 - Scanning

- Electrical System Component
 - Sensor / Camera
 - Grabber

- Processing
 - Inspection Spec.
 - Speed Obstacle
 - Algorithm / Implementation with CUDA
Schematic of TFT

- Gate line
- Data line
- Adjacent data line
- TFT
- Pixel electrode
- Common line / adjacent gate line
- Storage / additional capacitor
- Insulation

[nBiz]
Types of TFTs

- TN + film (Twisted nematic)
- IPS (LG-Philips, Hitachi, 1996)
 - IPS (in-plane switching)
 - AS-IPS (Advanced Super-IPS) – LG-Philips
 - A-TW-IPS (Advance True White-IPS) – LG-Philips
- VA (Samsung, Fujitsu, 1998)
 - MVA (multi-domain vertical alignment)
 - PVA (patterned vertical alignment) - Samsung
TN

- Low Driving Voltage
- Narrow viewing angle

Off (White) On (Black)

Narrow viewing angle
IPS

- Very wide viewing angle
- Slow Response speed
- Low brightness
VA

- High Contrast Ratio
- Wide viewing Angle
- Fast Response speed

(a) Mono-domain VA
(b) Multi-domain VA

Figure: Koike, Y, Super high quality MVA-TFT liquid crystal displays 1999
Types of Defects (Color Filter) (1/2)

- Macro-Defects (can be find by human eyes)
 - IRO-MURA : Unevenness of color
 - SIMI : Stain on a filter
 - IRO-ZURE : mis-alignmeant of color cells

Reference: K-NAKASHIMA, Hybrid Inspection System for LCD Color Filter Panels 1994
Types of Defects (Color Filter) (2/2)

- Micro-Defects
 - Black Matrix Hole
 - Black Matrix Pattern Defect
 - SIRO-NUKE (Color area shortage)
 - Particle /Grain / Dust
 - Hole in ITO film
Lighting / Focusing

- LED Lighting
 - Co-axial
 - Front light
 - Back light
- Runtime Auto Focusing

[Diagram showing LED lighting setup with front light, back light, half mirror, and camera.]

10
Optical Magnification

- 2x, 10x magnification

TFT

2.7mm

resolution: 1.3 μm

10X

13μm

27mm

2K CCD

50x 20x 10x 5x 2x

7μm

57.3mm

TFT

28.7mm

resolution: 3.5 μm

8K CCD

nBiz
Scanning

2520 mm

2200 mm

28.7 mm

Scan

x8

x8

x8

x8

x8

x8

x8

x8

x8

x8
Array & Scanning

- Unidirectional Way
- Bidirectional Way
- Repetition (Multi Line Scan)
 - Related to magnification
 - Large No. of Repetition → Increase No. of Camera
 - 7 Gen. 2x, 10 Camera (7μm) : 8 times
Electrical System Components

- **Sensor / Camera**
 - 2K TDI Camera (13μm x 13μm, Max. 52KHz, 104MByte/s)
 - 8K Linear Sensor (7μm x 7μm, Max. 33KHz, 264MByte/s)
 - 8K TDI Camera (7μm x 7μm, Max. 68KHz, 640MByte/s)

- **Grabber**: Matrox’s Solios eCL/XCL
- **CPU**: Intel’s Dual Core, 2.4GHz
- **GPU**: nVidia’s FX5600
- **OS**: Window XP Professional
- **Soft Development Environment**: MS Visual Studio 2005
Camera & Sensor

- **Camera**
 - 2048/8192, Gray
 - Time Delay and Integration (TDI), 64/96
 - Max. Line Rate
 - 52/68 KHz
 - Max. Data Rate
 - 120/640 Mbyte/s
 - 13x13 / 7x7 μm²
 - 4/8 Taps
 - 8/10 bit

- **Sensor**
 - 8192, Gray
 - Line Rate
 - 33 KHz
 - Average Data Rate
 - < 304 MHz
 - 13x3 μm²
 - 8 Taps
Grabber

- Matrox’s Solios eCL/XCL
 - Small amount of Preprocessing
- x4 PCI express/ PCI-X
 - PCI express: 1GByte/s for each direction
 - PCI-X (64bit, 133MHz): 1GByte/s
- 64 MB acquisition buffer
 - Relatively Small buffer size - It’s enough
 - Frame(number of line) Options
 - 2K x 500/1000/2000/4000 line
 - 1/2/4/8 MB per frame
- Camera Link
 - Dual Base/Medium Link
 - Full Link
Micro Inspection Specification

- Camera/Sensor: Area/Line
- Enlarge Defect Area after Macro Inspection
- Repair defects
- Resolution
 - Below 1μm x 1μm (About x10 optically magnified)
- Total Amount of Data
 - Proportion to no. of Areas where defects possibly exist
- Required Processing Power
 - Looser but *Real Time* (large amount of data)
 - Up to Camera maximum speed
 - **120 Mbyte/s**
Macro Inspection Specification

- Scan Entire Area
- 7th Generation TFT
 - Size: 2200 x 2520mm
- Resolution: about 5\textmu m x 5\textmu m
- Total Amount of Data: 221.8GB per Panel
Data Rate

- No. of Cameras
- Inspection Time / Processing Speed
- Resolution
- Current Primary Target
 - ~640MByte/s
Speed Obstacles

- **Image Quality (Simplifying Algorithm)**
 - Unstabilized Focus
 - Scan speed perturbation
 - Unevenness of Light
 - Lens distortion
 - Reduce Camera Cell dimension / Enlarge lens diameter
 - Orientation
 - Large no. of defects
 - Sensor/Electrical Noise

- **Algorithm Processing**
 - Sensor/Camera Acquisition Speed
 - Data Transfer Bandwidth
 - Processing Speed
Light Unevenness & Lens distortion
Scan Speed Perturbation
Basic Algorithms (1/4)

- **Compare Neighbors**
 - A, B and C
 - Constant distance X and Y
 - Shifted cell pattern
 - With Offset O_X

- **Masking**
Basic Algorithm (2/4)

- 1D FFT (Macro Inspection)
Basic Algorithm (3/4)

- 2D FFT (Micro Inspection)

![Image of 2D FFT output with labeled TFT, Common line, Data line, and Gate line]

![Graph of 2D FFT output with labeled axes]
Basic Algorithm (4/4)

- Results

Reference: D.-M. TSAI, One-dimensional-based automatic defect inspection of multiple patterned TFT-LCD panels using Fourier image reconstruction 2007
Implementation

- Difference between patterns in neighbor
- Target pixel compared to 6 pixels in neighbor patterns:
 - Normal pixel should be below threshold
Implementation on GPU

- 1 thread process through single line
- One Dimensional block/thread
 - 32 blocks in grid, 64 threads in a block (2048 thread)
 - Optimal: 32 threads in a warp
 - No. of threads can be increased by 32 times from 96 to 384
- Process from left to right
8MByte Processing Time (1/2)

- 2048x500 (≈1MByte) : Transfer ratio : 78 %
- 2048x1000 (≈2MByte) : Transfer ratio : 72 %
- 2048x2000 (≈4MByte) : Transfer ratio : 69 %
 - Best GPU efficiency
- 2048x4000 (≈8MByte) : Transfer ratio : 67 %
 - Best Transfer efficiency
Processing Time (2/2)

- Reduce Data Transfer Time
 - Enlarge frame size
 - Reduce Result Data
 - Use streaming
 - Increase data Bandwidth (Host ⟷ GPU)

![Graph showing processing speed vs data size]

- GPU only
- Overall
Required Bandwidth (1/2)

- Target Sensor/Camera Data Rate: 640MByte/s
- Extra CPU Main Memory (DDR2) Access
 - IO (Hard disk), DRAM Refresh / Phasing
 - Kernel/Application/Graphic
 - DMA Management
Actual Value

- Host to Device (vice versa): 1.6 GByte/s
- Device to Device: 62 GByte/s
Embedded System

- Reduce No. of Computers
- Solve the bandwidth problem
Conclusion

- TFT Inspection System
 - Typical case of Single Instruction, Multiple Data (SIMD)
 - Relatively simple instruction/algorithm
 - Huge amount of data – Data Bandwidth important
- Currently 120MByte/s is achieved with CUDA
- 640Mbyte/s will be possible achieved with CUDA
 - Increase Data Bandwidth
 - Embedded system
 - Reduce extra transfer / Optimize Algorithm
Thank You!